Resident Evil: Understanding Residential IP Proxy as a Dark Service

Xianghang Mi, Xuan Feng, Xiaojing Liao, Baojun Liu, XiaoFeng Wang, Feng Qian, Zhou Li, Sumayah Alrwais, Limin Sun, Ying Liu
Background: Web Proxies

Tor

Exit nodes are constrained

VPN

Exit nodes are distinguishable

HTTP/HTTPS/ SOCKS

Exit nodes may be heavily abused

Service blocking or degradation
Background: Residential IP Proxy as a Service
Background: Residential IP Proxy as a Service

- Millions of Residential IPs
- Clean IPs, Never Get Blocked
- Globally Distributed
- No Traffic Limits
Outline

Service Overview
- Network Structure & Scale & Distribution

Residential or Not
- Are proxy peers authentically residential IP addresses?

Evasiveness
- How well can proxy peers evade traffic detection or blocking?

Recruitment
- How can millions of proxy peers get recruited?

Usage
- What are those proxies used for, in the real world?

Misc. Findings
- Collusion, Local traffic, etc.
Service Overview: How it works

Proxy Customer

Proxy Gateways

Residential Proxy Peers

Destinations

facebook.com

google.com

amazon.com

Scripts
Service Overview: How it works

- Back-connect proxy model, proxy peers are hidden from customers
- HTTP/HTTPS/ SOCKS
- Multiple rotating strategies: sticky & non-sticky
- Allow customers to customize location of proxy peers
Service Overview: Scale

Each request is identified by a unique subdomain

<table>
<thead>
<tr>
<th>Provider</th>
<th>Price</th>
<th>Payment</th>
<th>Infiltration Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxies Online</td>
<td>$25/GB</td>
<td>Paypal</td>
<td>07/06/2017 - 11/24/2017</td>
</tr>
<tr>
<td>Geosurf</td>
<td>$300/month</td>
<td>Paypal</td>
<td>09/17/2017 - 10/22/2017</td>
</tr>
<tr>
<td>ProxyRack</td>
<td>$40/month</td>
<td>Bitcoin</td>
<td>09/18/2017 - 11/24/2017</td>
</tr>
<tr>
<td>Luminati</td>
<td>$500/month</td>
<td>Paypal</td>
<td>09/25/2017 - 11/01/2017</td>
</tr>
<tr>
<td>IAPS Security</td>
<td>$500/month</td>
<td>Bitcoin</td>
<td>09/23/2017 - 11/01/2017</td>
</tr>
</tbody>
</table>
Service Overview: Scale

- Each request is identified by a unique subdomain.
- Each request/response has payload encrypted and signed.

60+ millions of successful probes
6.2 millions of unique IPv4 addresses
238 countries/regions, 52K+ ISPs.
Service Overview: Distribution

4096 * 4096 bitmap

Each /24 IPv4 prefix is mapped to a pixel, using Hilbert curve of order 12

Different pixel colors denote # of proxy IPs for a given /24 prefix
Service Overview: Distribution

[Diagram showing IP address distribution and color-coded regions for different organizations such as APNIC, ARIN, RIPE, DISA, and AT&T Merit.]
Residential or Not

Find Groundtruth → **Select Features** → **Train/Evaluate Classifiers** → **Predict Proxy IPs**

GT sources of various noise levels

Clean GT for training, noisy for evaluation

<table>
<thead>
<tr>
<th>Source</th>
<th>Label</th>
<th># IPs</th>
<th># /16</th>
<th># /8</th>
<th># Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>resi-clean</td>
<td>79</td>
<td>25</td>
<td>19</td>
<td>79</td>
</tr>
<tr>
<td>Device Search Engine</td>
<td>resi-clean</td>
<td>89,345</td>
<td>13,525</td>
<td>195</td>
<td>9,921</td>
</tr>
<tr>
<td>Trace My IP</td>
<td>resi-noisy</td>
<td>37,480</td>
<td>11,402</td>
<td>213</td>
<td>0</td>
</tr>
<tr>
<td>Filtered IP Whois</td>
<td>resi-noisy</td>
<td>23,264,961</td>
<td>394</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>IoT Botnets</td>
<td>resi-noisy</td>
<td>1,699,291</td>
<td>20,112</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>Public Clouds</td>
<td>non-resi-clean</td>
<td>53,716,321</td>
<td>968</td>
<td>99</td>
<td>5,000</td>
</tr>
<tr>
<td>Alexa Top1M</td>
<td>non-resi-clean</td>
<td>442,989</td>
<td>14,365</td>
<td>213</td>
<td>4,481</td>
</tr>
<tr>
<td>Commercial Proxies</td>
<td>non-resi-clean</td>
<td>519</td>
<td>71</td>
<td>44</td>
<td>519</td>
</tr>
<tr>
<td>Public Proxies</td>
<td>non-resi-noisy</td>
<td>148,509</td>
<td>14,004</td>
<td>204</td>
<td>0</td>
</tr>
</tbody>
</table>
Residential or Not

Find Groundtruth

Select Features

Train/Evaluate Classifiers

Predict Proxy IPs

Residential IPs/prefixes are usually web clients instead of servers

Residential IPs/prefixes tend to be directly managed by ISPs

DNS Records & Historical IP Whois

Capture web activities

Capture network hierarchy

Capture evolution by time

35 features

For example, number of TLD+3 domains mapped to the parent /24 IP prefix
Residential or Not

Find Groundtruth → Select Features → Train/Evaluate Classifiers → Predict Proxy IPs

10K residential & 10K non-residential IPs

ML Classifier Training/Tuning

Random Forest Classifier
Recall: 97.12%
Precision: 95.61%
Residential or Not

Find Groundtruth → Select Features → Train/Evaluate Classifiers → Predict Proxy IPs

5.9M (95.22%) of 6.2M predicted as residential IPs
Evasiveness

Recognized as proxy?

Identified as malicious?
Evasiveness

Recognized as proxy?

Identified as malicious?

Publicly available proxy dataset

- Tor relays
- Free web proxies
- IP2Proxy LITE

Only 0.06% of 6.2M IPs
Evasiveness

Recognized as proxy?

Identified as malicious?

Publicly available IP threats
- Botnet bots
- Spamhaus EDROP
- Open Threat Exchanges

Only 2.20% of 6.2M IPs
Recruitment

- Identify legitimate recruitment programs
- IP Profiling
- Identify proxy programs

Are those proxy peers voluntary users?

Any IoT devices?

What programs are used to proxy traffic?
Recruitment

Identify legitimate recruitment programs

IP Profiling

Only Luminati was found to recruit users through Hola programs

And Hola programs were reported as problematic in previous studies

Identify proxy programs
Recruitment

- **Identify legitimate recruitment programs**
- **IP Profiling**
- **Identify proxy programs**

730K IPs responded to our banner grabbing

550K got device type identified

All providers got suspicious IoT devices identified for their proxy IPs, including Luminati.

Device Type

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Num</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>router</td>
<td>114,768</td>
<td>48.42</td>
</tr>
<tr>
<td>firewall</td>
<td>25,088</td>
<td>10.58</td>
</tr>
<tr>
<td>WAP</td>
<td>24,470</td>
<td>10.32</td>
</tr>
<tr>
<td>gateway</td>
<td>22,003</td>
<td>9.28</td>
</tr>
<tr>
<td>broadband</td>
<td>17,358</td>
<td>7.32</td>
</tr>
<tr>
<td>webcam</td>
<td>13,024</td>
<td>5.49</td>
</tr>
<tr>
<td>security-misc</td>
<td>10,608</td>
<td>4.48</td>
</tr>
<tr>
<td>DVR</td>
<td>4,249</td>
<td>1.79</td>
</tr>
<tr>
<td>media device</td>
<td>2,589</td>
<td>1.09</td>
</tr>
<tr>
<td>storage-misc</td>
<td>1,988</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Device Vendor

<table>
<thead>
<tr>
<th>Device Vendor</th>
<th>Num</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MikroTik</td>
<td>86,593</td>
<td>36.53</td>
</tr>
<tr>
<td>Huawei</td>
<td>37,545</td>
<td>15.84</td>
</tr>
<tr>
<td>BusyBox</td>
<td>18,337</td>
<td>7.74</td>
</tr>
<tr>
<td>Technicolor</td>
<td>16,866</td>
<td>7.12</td>
</tr>
<tr>
<td>SonicWall</td>
<td>14,122</td>
<td>5.96</td>
</tr>
<tr>
<td>Fortinet</td>
<td>9,190</td>
<td>3.88</td>
</tr>
<tr>
<td>Dahua</td>
<td>6,258</td>
<td>2.64</td>
</tr>
<tr>
<td>ZyXEL</td>
<td>5,601</td>
<td>2.36</td>
</tr>
<tr>
<td>AVM</td>
<td>5,272</td>
<td>2.22</td>
</tr>
<tr>
<td>Cyberoam</td>
<td>4,558</td>
<td>1.92</td>
</tr>
</tbody>
</table>
Recruitment

Identify legitimate recruitment programs

IP Profiling

Identify proxy programs

Traffic logs of Infiltration probes

Accurate Correlation

Traffic logs of potentially unwanted programs (PUP)

- 67 PUP samples identified
- Proxy programs are found for all 5 providers
- 50 of them were flagged by anti-virus engines
Usage

For the 67 proxy programs, **5M traffic logs** were sampled to study usage.

- 9.36% of the destinations were reported to be malicious by VirusTotal.

Phishing: 14%
Malicious: 39%
Malware: 47%

For the 67 proxy programs, 5M traffic logs were sampled to study usage.

9.36% of the destinations were reported to be malicious by VirusTotal.

Top 1000 traffic destinations were manually studied.

- AD: 75%
- SE: 8%
- Shopping: 7%
- Malicious: 5%
- Social: 2%
- Other: 1%
Usage

For the 67 proxy programs, **5M traffic logs** were sampled to study usage.

9.36% of the destinations were reported to be malicious by VirusTotal.

Top 1000 traffic destinations were manually studied.

- **Mobile advertising, in-app advertising, video advertising, ad exchanges**: ads.stickyadstv.com, counter.yadro.ru, and adskpak.com.
For the 67 proxy programs, 5M traffic logs were sampled to study usage.

9.36% of the destinations were reported to be malicious by VirusTotal.

Top 1000 traffic destinations were manually studied.
Usage

- For the 67 proxy programs, 5M traffic logs were sampled to study usage.
- 9.36% of the destinations were reported to be malicious by VirusTotal.
- Top 1000 traffic destinations were manually studied.

- AD: 75%
- SE: 8%
- Shopping: 7%
- Malicious: 5%
- Social: 2%
- Other: 1%

Some of the destinations included are: amazon.com, ebay.com, sears.com, and tmall.com.
Usage

- For the 67 proxy programs, 5M traffic logs were sampled to study usage.
- 9.36% of the destinations were reported to be malicious by VirusTotal.
- Top 1000 traffic destinations were manually studied.

![Bar chart showing usage distribution and specific domains like lenzmx.com and csgob0t.online.](chart.png)
For the 67 proxy programs, 5M traffic logs were sampled to study usage.

9.36% of the destinations were reported to be malicious by VirusTotal.

Top 1000 traffic destinations were manually studied.

- facebook.com
- twitter.com

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>75%</td>
</tr>
<tr>
<td>SE</td>
<td>8%</td>
</tr>
<tr>
<td>Shopping</td>
<td>7%</td>
</tr>
<tr>
<td>Malicious</td>
<td>5%</td>
</tr>
<tr>
<td>Social</td>
<td>2%</td>
</tr>
<tr>
<td>Other</td>
<td>1%</td>
</tr>
</tbody>
</table>
Misc. Findings

Connection between proxy providers

- Proxies Online and Geosurf are the same proxy provider

Risk to the local network

- IAPS Security is some kind of reseller for Luminati

Long-tailed distribution

<table>
<thead>
<tr>
<th></th>
<th>Proxies Online</th>
<th>Geosurf</th>
<th>IAPS Security</th>
<th>Luminati</th>
<th>ProxyRack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxies Online</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geosurf</td>
<td></td>
<td>12.5%</td>
<td></td>
<td>0.06%</td>
<td>0.09%</td>
</tr>
<tr>
<td>IAPS Security</td>
<td>0%</td>
<td>0%</td>
<td>66%</td>
<td>0.07%</td>
<td>0.07%</td>
</tr>
<tr>
<td>Luminati</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.07%</td>
<td>0.04%</td>
<td>0.04%</td>
</tr>
<tr>
<td>ProxyRack</td>
<td>0.14%</td>
<td>0.86%</td>
<td>0%</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>
Misc. Findings

Connection between proxy providers

Risk to the local network

Long-tailed distribution

3 out of 5 providers allow local traffic

Our Client → Proxy Gateway → Proxy Peer → Our Web server

127.0.0.1

rpaas.site

Response

192.168.0.1

Response
Misc. Findings

Connection between proxy providers

Risk to the local network

Long-tailed distribution

<table>
<thead>
<tr>
<th>Provider</th>
<th>Top Countries (%)</th>
<th>Top ASNs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxies Online</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proxies Online</td>
<td>Indian 32.2, USA 7.8, Mexico 6.7</td>
<td>9829, 8151, 24560</td>
</tr>
<tr>
<td>Geosurf</td>
<td>India 27.9, Brazil 9.2, Mexico 9.1</td>
<td>8151, 9829, 55836</td>
</tr>
<tr>
<td>ProxyRack</td>
<td>Russia 8.6, Indonesia 8.1, Egypt 6.3</td>
<td>1797, 8452, 45595</td>
</tr>
<tr>
<td>Luminati</td>
<td>Turkey 12.7, Ukraine 7.9, UK 6.1</td>
<td>9121, 25019, 34984</td>
</tr>
</tbody>
</table>
A prosperous ecosystem with higher prices and more service providers

Millions of residential IPs with high evasiveness

Potential threats to local network environments

Problematic recruitment: a mix of legitimate and suspicious channels

Powerful infrastructure for online abuse activities

Promising and stealthy monetization channels for compromised devices

A lie that is half-truth is the darkest of all lies.
—Alfred Tennyson