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Malicious Peripherals

5.3 Billion Devices Affected
0day attacks over NFC!

BadBluetooth Attacks

Weakness – Profile Authentication

• Inconsistent Authentication Process on Profile
§ Device-level authentication

§ No profiles indication on pairing 

§ Show a list in details menu if paired

§ Device can change profile dynamically! 

pairing

after pairing

(still “trusted”)

(build trust)

Android Bluetooth Menu
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Fig. 11. Smartphone status monitoring system embedded in a wooden table.

Fig. 12. Results of user study.

a means of detecting the status of a smartphone, it is clear
that a smartphone detected as unlocked can be attacked with
the Tap ’n Ghost. We note that this monitoring system can be
turned into a TAP-installed table if we configure it as such.
User study procedure: The experiment consisted of the three
sessions:
Session 1 Quiz (15 mins)
In this session, the aim was to simulate a situation in which a
person had to use a smartphone while she or he was working
on a task at a public place. Participants were asked to write
the answers to the quizzes written on a paper. At the time of
recruiting, we informed the participants that the objective of
this experiment was to observe how a person makes use of a
smartphone when she or he needs to search for information.
As we focused on testing the assumption A3 in this study, we
designed our experiment assuming that other assumptions A1

and A2 had been established; these two assumptions have been
verified in the previous subsections. To achieve this condition,
we asked the participants to enable NFC functionality during
the experiment. To make the context of NFC natural, we
informed the participants that NFC is used for recording
check-in/out times and asked them to touch the NFC tags we
provided with their smartphones at the beginning and ending
of the experiment. We note that we did not inform users to
unlock the smartphone (except when they needed to unlock
the smartphone to read the check-in/out NFC tags), because
our objective was to check whether or not a person brings

their device close to the table in an unlocked status.
During the session, participants used their smartphones

when they answered the quiz questions. To emulate a scenario
described before, we created quizzes such as “Write the names
of the three kings who owned their pyramid complex at Giza.”
Consequently, most of participants had to search the Internet to
get the correct answer; it will emulate the situation in which a
person is studying at a public place and used their smartphone
to lookup something.
Session 2 Break time (10 mins)
In this session, the aim was to simulate a situation in which a
person who brings a smartphone is seated at a table. In contrast
to the previous session, we did not force the participants to
use their smartphones. After the Session 1 concluded, we
asked participants to remain seated at the table while we were
preparing for the next session and left them the room. We
provided them with tea and snacks to put them in a relaxed
state.
Session 3 Debriefing (10 mins)
In the debriefing session, we first disclosed the true purpose
of this study and the reason why we had to deceive the
participants. We did not receive any negative feedback on
the deceptive aspect of the study. We then asked a series of
questions to understand how they actually behaved during the
experiment. We also asked them to examine their smartphones
to get detailed spec information.
Results: In Figure 12, the results of these activities are shown.
We first note that there were several exceptions (marked as
“not available”) as follows. Among the 16 participants, P7
owned a device that did not respond to the probes sent from
the NFC readers. The device was a Huawei Honor 8. When
it receives a probing command, it pops up a window of
Huawei Pay without sending back any commands. As we will
discuss in Section VIII, this type of user approval process
can be an effective countermeasure against the threats caused
by a malicious NFC tag. P2, P13, and P15 misunderstood
our instruction and disabled NFC after they completed the
first session. We also note that P12 and P15 completed the
quiz task within 15 mins. In the following, we eliminate the
corresponding “Not Available” time marked with grey color
in Fig. 12 from the analysis.

In the Session 1, all the participants presented opportunities
to be attacked within 15 mins. Most of the participants
reported in the debriefing session that she or he had unlocked
her or his smartphone and put it on the table when she or he
looked up something using the smartphone. As the participants
needed to work on quizzes, it is natural that they behaved in
that way.

In the Session 2, 10 out of 12 participants presented op-
portunities to be attacked within 10 mins. Interestingly, while
the participants were taking a break, majority of them used
their smartphones on the table. This result indicates that Tap
’n Ghost is also effective for person who is not studying, but
taking a break at a table. Two participants who did not present
opportunities to be attacked during the break time reported
that they were either eating snacks or using their smartphones
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Solution?

Specially-crafted pkt

Functional-unexpected pkt

Malformed pkt
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Challenges
• Peripheral Diversity

• USBFILTER (USENIX Sec’16), USBFirewall (ACSAC’17)
• Bluetooth, NFC, etc.

• Filtering (Rule) Complexity
• Programmability vs. Usability
• Extensibility
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• A generic security framework for peripherals
• Peripheral agnostic
• LBM hooks
• eBPF
• Filter DSL
• Module extension
• USB, Bluetooth, NFC

Linux (e)BPF Modules (LBM)

  

                                                                           

  

                                                                           

Peripheral Diversity

Filtering Complexity
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LBM: Architecture
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Figure 1: LBM Architecture.
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Figure 2: LBM hooks inside the USB subsystem.

C. LBM Kernel Infrastructure

We design LBM as a standalone kernel component/subsys-
tem statically linked into the kernel image. Since LBM cannot
be unloaded/reloaded as a kernel module, this design achieves
G2 – tamper-proofness.

For each kind of peripheral that LBM supports, we need
to place “hooks” on both the TX and RX paths to mediate
each packet being sent to and received from, respectively, the
peripheral. While different peripheral subsystems may have
different structuring of their software stack architectures within
the Linux kernel, we follow two general rules on the placement
of LBM hooks. First, these hooks should be placed close to
the real hardware controlling the corresponding peripherals.
This helps reduce the potential impact from vulnerabilities
within the upper layer of the software stack (e.g., by packets
bypassing the hooks). Second, these hooks should be general
enough without relying on the implementation of certain
hardware. As a result, we place LBM hooks beneath the core
implementation of the peripheral’s protocol stack, and above
a specific peripheral controller driver.

Take USB as an example. As shown in Figure 2, LBM
hooks are deployed right above the host controller device and
its driver, which communicates with USB peripherals directly.

Support/Solution usbfilter USBFirewall LBM
Module Plugin X X

Stack Protection X X
User-defined Rules X X
TX Path Mediation X X
RX Path Mediation X X
Bluetooth and etc. X

Table I: LBM vs. usbfilter vs. USBFirewall. LBM unifies usb-
filter and USBFirewall, providing a superset of their properties.

At the same time, they are deployed below the USB core and
other USB device drivers, preventing third-party USB drivers
from bypassing these hooks. This placement of LBM hooks
achieves G1 – complete mediation.

Since LBM allows the loading of eBPF programs into
the kernel space and executing these programs for peripheral
packet filtering, special care is needed to make sure these
programs are not introducing new vulnerabilities into the
kernel or bypassing security mechanisms enforced by the
kernel. We leverage the eBPF verifier [61] to examine each
eBPF program before it can be loaded. Unlike normal eBPF
programs (mainly used by the networking subsystem) loaded
by the bpf syscall, we forbid both bounded loop [24] and
packet rewriting (e.g., changing the port number of a TCP
packet) in LBM. Once a program passes verification, we can
be sure that the program halts after a limited number of state
transitions, that each program state is valid (e.g., no stack
overflow), and that each instruction does not change the kernel
memory (besides its own stack). We achieve G3 – verifiability
for programs executed by LBM.

LBM draws inspiration from the state-of-the-art solutions
including usbfilter [69] and USBFirewall [37], and improves
on them, as shown in Table I. Similar to usbfilter, LBM
supports kernel module plugin. As depicted in Figure 1, dif-
ferent LBM kernel modules (e.g., lbm1-lbm3) can be plugged
into the LBM framework and essentially hook into the TX
and/or RX paths for different peripherals. As we will later
show in Section V-A, it takes less than 20 lines of change
to convert a LUM (Linux Usbfilter Module) into an LBM
module. To protect protocol stacks from malformed packets,
we derive packet field constraints from specifications. Rather
than translating these constraints into C and compiling them
into the kernel image like USBFirewall, we transform them
into eBPF programs and load them on the RX paths for mal-
formed packet filtering. In short, we achieve G4 – generality,
by supporting all features provided by existing solutions and
extending support to other peripherals, such as Bluetooth.

To ease support for a new kind of peripheral, we design a
unified API used by different subsystems to hook into LBM:

int lbm_filter_pkt(
int subsys, int dir, void *pkt)

subsys determines the index of a certain peripheral subsys-
tem (e.g., 0 for USB and 1 for Bluetooth); dir specifies the
direction of the I/O path: TX or RX; and pkt points to the
core kernel data structure used to encapsulate the I/O packet
depending on different subsystems, (e.g., urb for USB and

4
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• Linux Security Modules (LSM)
• > 100 (kernel 4.13)

LBM: Hooks
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Figure 2: LBM hooks inside the USB subsystem.

C. LBM Kernel Infrastructure

We design LBM as a standalone kernel component/subsys-
tem statically linked into the kernel image. Since LBM cannot
be unloaded/reloaded as a kernel module, this design achieves
G2 – tamper-proofness.

For each kind of peripheral that LBM supports, we need
to place “hooks” on both the TX and RX paths to mediate
each packet being sent to and received from, respectively, the
peripheral. While different peripheral subsystems may have
different structuring of their software stack architectures within
the Linux kernel, we follow two general rules on the placement
of LBM hooks. First, these hooks should be placed close to
the real hardware controlling the corresponding peripherals.
This helps reduce the potential impact from vulnerabilities
within the upper layer of the software stack (e.g., by packets
bypassing the hooks). Second, these hooks should be general
enough without relying on the implementation of certain
hardware. As a result, we place LBM hooks beneath the core
implementation of the peripheral’s protocol stack, and above
a specific peripheral controller driver.

Take USB as an example. As shown in Figure 2, LBM
hooks are deployed right above the host controller device and
its driver, which communicates with USB peripherals directly.

Support/Solution usbfilter USBFirewall LBM
Module Plugin X X

Stack Protection X X
User-defined Rules X X
TX Path Mediation X X
RX Path Mediation X X
Bluetooth and etc. X

Table I: LBM vs. usbfilter vs. USBFirewall. LBM unifies usb-
filter and USBFirewall, providing a superset of their properties.

At the same time, they are deployed below the USB core and
other USB device drivers, preventing third-party USB drivers
from bypassing these hooks. This placement of LBM hooks
achieves G1 – complete mediation.

Since LBM allows the loading of eBPF programs into
the kernel space and executing these programs for peripheral
packet filtering, special care is needed to make sure these
programs are not introducing new vulnerabilities into the
kernel or bypassing security mechanisms enforced by the
kernel. We leverage the eBPF verifier [61] to examine each
eBPF program before it can be loaded. Unlike normal eBPF
programs (mainly used by the networking subsystem) loaded
by the bpf syscall, we forbid both bounded loop [24] and
packet rewriting (e.g., changing the port number of a TCP
packet) in LBM. Once a program passes verification, we can
be sure that the program halts after a limited number of state
transitions, that each program state is valid (e.g., no stack
overflow), and that each instruction does not change the kernel
memory (besides its own stack). We achieve G3 – verifiability
for programs executed by LBM.

LBM draws inspiration from the state-of-the-art solutions
including usbfilter [69] and USBFirewall [37], and improves
on them, as shown in Table I. Similar to usbfilter, LBM
supports kernel module plugin. As depicted in Figure 1, dif-
ferent LBM kernel modules (e.g., lbm1-lbm3) can be plugged
into the LBM framework and essentially hook into the TX
and/or RX paths for different peripherals. As we will later
show in Section V-A, it takes less than 20 lines of change
to convert a LUM (Linux Usbfilter Module) into an LBM
module. To protect protocol stacks from malformed packets,
we derive packet field constraints from specifications. Rather
than translating these constraints into C and compiling them
into the kernel image like USBFirewall, we transform them
into eBPF programs and load them on the RX paths for mal-
formed packet filtering. In short, we achieve G4 – generality,
by supporting all features provided by existing solutions and
extending support to other peripherals, such as Bluetooth.

To ease support for a new kind of peripheral, we design a
unified API used by different subsystems to hook into LBM:

int lbm_filter_pkt(
int subsys, int dir, void *pkt)

subsys determines the index of a certain peripheral subsys-
tem (e.g., 0 for USB and 1 for Bluetooth); dir specifies the
direction of the I/O path: TX or RX; and pkt points to the
core kernel data structure used to encapsulate the I/O packet
depending on different subsystems, (e.g., urb for USB and

4

• Linux (e)BPF Modules (LBM)
• 1

1 int lbm_filter_pkt(int subsys, int dir, void *pkt)
2 {
3 check_subsystem(subsys);
4 check_path(dir);
5 check_pkt(pkt);
6 res = ALLOW;
7 if (dir == TX) {
8 for_each_ebpf_in_db[subsys][dir] {
9 if (ebpf(subsys, dir, pkt) == DROP) {

10 res = DROP;
11 goto RET;
12 }}
13 for_each_kmod_in_db[subsys][dir] {
14 if (kmod(subsys, dir, pkt) == DROP) {
15 res = DROP;
16 goto RET;
17 }}
18 } else { /* Ditto for the RX */ }
19 RET:
20 return res; }

Figure 4: Pseudo-code of lbm_filter_pkt.

type BPF_PROG_LOAD_LBM to distinguish LBM calls from
other typical BPF usage. Unlike typical eBPF programs, which
only normally only persist for the lifetime of the loading
process, LBM programs must survive after LBMTOOL exits.
To extend the lifetime of these programs, we pin them using
the BPF filesystem [16], essentially using the filesystem to
increase the reference count of the object. Before a program
is loaded by the LBM core, the eBPF verifier checks every
instruction of the program for any security violations. Depend-
ing on the subsystem (e.g., USB or Bluetooth) of the program,
LBM provides different verifier callbacks, such as LBM USB
or LBM Bluetooth (as we will detail later), thus making sure
every memory access of the program is meaningful, aligned,
and safe.

Inside LBM, all eBPF programs are organized based on
the relevant subsystem and the direction of the filtering path
(i.e., TX or RX). We allow the same program to apply for
both the TX and RX paths when it is loaded using the BPF
syscall, and duplicate the program on TX and RX queues,
respectively. The separation of TX and RX paths is mainly
for performance, since it allows us to bypass programs that do
not interpose on a certain path during filtering. Additionally,
to avoid expensive locking, each program is protected by the
read-copy-update (RCU) [30] mechanism to enable concurrent
reads by different LBM subsystems. LBM modules are also
organized according to subsystem and filter path, and pro-
tected by RCU. The pseudo code of lbm_filter_pkt is
mentioned in Section III-C and presented in Figure 4.

To ease the management of LBM eBPF
programs and modules, we expose ten entries under
/sys/kernel/security/lbm/, including a global
switch to enable/disable LBM; per-subsystem switches to
enable/disable debugging, profiling, and statistics; and per-
subsystem-per-path controls to view/remove loaded programs
and modules. The whole implementation of LBM core is
around 1.6K lines of code.

Subsystem # of Fields # of BPF-helpers # of Lines
USB 34 31 621

Bluetooth-HCI 30 29 683
Bluetooth-L2CAP 28 27 744

TOTAL 92 87 2048

Table III: LBM statistics per subsystem, including # of fields
exposed to the user space, # of BPF helpers implemented, and
# of lines of code changes.

LBM USB: As shown in Figure 2, LBM hooks into the
Host Controller Device (HCD) core implementation to cover
both TX and RX paths. These hooks eventually call to
lbm_filter_pkt before the packet reaches the USB core,
as demonstrated below:

lbm_filter_pkt(LBM_SUBSYS_INDEX_USB, LBM_DIR_TX,
(void *)urb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_USB, LBM_DIR_RX,
(void *)urb);

Every USB packet (urb) then needs to go through the LBM
core for filtering before being sent to or received from USB
peripherals.

To support rules from LBMTOOL, we expose packet meta-
data maintained by the kernel and packet fields defined by
the USB specification to eBPF programs. To achieve this, a
naive approach would be to mirror the urb structure to the
userspace, while providing every field explicitly in the filter
language. Unfortunately, exposing raw kernel structures to the
userspace is a security risk as it will leak sensitive kernel
pointer values, which can be used to break Kernel ASLR [22].
Supporting every field explicitly is infeasible as well, given the
complexity of the protocol suites. As a trade-off, we expose the
most commonly recognized and used fields and provide special
BPF helpers to access the rest. These helpers allow eBPF to
support array accesses to urb structures, thus enabling eBPF
to access every field within a USB packet.

As shown in Table III, we expose 34 fields and implement
31 BPF helpers for the USB subsystem. Besides the special
BPF helpers mentioned above, some helpers return the length
of a buffer or string, while others provide access to the
indirect members of the urb structure. For fields that are direct
members, no helper is needed since we can access them using
an offset from within the urb. We group these fields together
in a struct and expose it to the user space, as listed below:

struct __lbm_usb {
__u32 pipe;
__u32 stream_id;
__u32 status;
__u32 transfer_flags;
__u32 transfer_buffer_length;
__u32 actual_length;
__u32 setup_packet;
__u32 start_frame;
__u32 number_of_packets;
__u32 interval;
__u32 error_count; };

Instead of exposing urb to the user space and using the offset
from it, LBMTOOL only needs to know __lbm_usb and use

6
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LBM: Hook Placement
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C. LBM Kernel Infrastructure

We design LBM as a standalone kernel component/subsys-
tem statically linked into the kernel image. Since LBM cannot
be unloaded/reloaded as a kernel module, this design achieves
G2 – tamper-proofness.

For each kind of peripheral that LBM supports, we need
to place “hooks” on both the TX and RX paths to mediate
each packet being sent to and received from, respectively, the
peripheral. While different peripheral subsystems may have
different structuring of their software stack architectures within
the Linux kernel, we follow two general rules on the placement
of LBM hooks. First, these hooks should be placed close to
the real hardware controlling the corresponding peripherals.
This helps reduce the potential impact from vulnerabilities
within the upper layer of the software stack (e.g., by packets
bypassing the hooks). Second, these hooks should be general
enough without relying on the implementation of certain
hardware. As a result, we place LBM hooks beneath the core
implementation of the peripheral’s protocol stack, and above
a specific peripheral controller driver.

Take USB as an example. As shown in Figure 2, LBM
hooks are deployed right above the host controller device and
its driver, which communicates with USB peripherals directly.

Support/Solution usbfilter USBFirewall LBM
Module Plugin X X

Stack Protection X X
User-defined Rules X X
TX Path Mediation X X
RX Path Mediation X X
Bluetooth and etc. X

Table I: LBM vs. usbfilter vs. USBFirewall. LBM unifies usb-
filter and USBFirewall, providing a superset of their properties.

At the same time, they are deployed below the USB core and
other USB device drivers, preventing third-party USB drivers
from bypassing these hooks. This placement of LBM hooks
achieves G1 – complete mediation.

Since LBM allows the loading of eBPF programs into
the kernel space and executing these programs for peripheral
packet filtering, special care is needed to make sure these
programs are not introducing new vulnerabilities into the
kernel or bypassing security mechanisms enforced by the
kernel. We leverage the eBPF verifier [61] to examine each
eBPF program before it can be loaded. Unlike normal eBPF
programs (mainly used by the networking subsystem) loaded
by the bpf syscall, we forbid both bounded loop [24] and
packet rewriting (e.g., changing the port number of a TCP
packet) in LBM. Once a program passes verification, we can
be sure that the program halts after a limited number of state
transitions, that each program state is valid (e.g., no stack
overflow), and that each instruction does not change the kernel
memory (besides its own stack). We achieve G3 – verifiability
for programs executed by LBM.

LBM draws inspiration from the state-of-the-art solutions
including usbfilter [69] and USBFirewall [37], and improves
on them, as shown in Table I. Similar to usbfilter, LBM
supports kernel module plugin. As depicted in Figure 1, dif-
ferent LBM kernel modules (e.g., lbm1-lbm3) can be plugged
into the LBM framework and essentially hook into the TX
and/or RX paths for different peripherals. As we will later
show in Section V-A, it takes less than 20 lines of change
to convert a LUM (Linux Usbfilter Module) into an LBM
module. To protect protocol stacks from malformed packets,
we derive packet field constraints from specifications. Rather
than translating these constraints into C and compiling them
into the kernel image like USBFirewall, we transform them
into eBPF programs and load them on the RX paths for mal-
formed packet filtering. In short, we achieve G4 – generality,
by supporting all features provided by existing solutions and
extending support to other peripherals, such as Bluetooth.

To ease support for a new kind of peripheral, we design a
unified API used by different subsystems to hook into LBM:

int lbm_filter_pkt(
int subsys, int dir, void *pkt)

subsys determines the index of a certain peripheral subsys-
tem (e.g., 0 for USB and 1 for Bluetooth); dir specifies the
direction of the I/O path: TX or RX; and pkt points to the
core kernel data structure used to encapsulate the I/O packet
depending on different subsystems, (e.g., urb for USB and

4
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Figure 5: LBM hooks inside the Bluetooth subsystem.

offsets against it to directly access these fields. LBM takes
care of translating struct member access within __lbm_usb
to one within the kernel urb.

To help the BPF verifier understand the security constraints
of LBM and the scope of the USB subsystem, we implement
three callbacks within struct bpf_verifier_ops used
by the verifier. We first explicitly enumerate all legal BPF
helpers for the verifier, including all the 31 LBM USB BPF
helpers mentioned above as well as other common BPF map
helpers. We exclude any existing BPF helpers designed for
the networking subsystem. Therefore, the verifier would reject
any LBM USB eBPF program that uses BPF helpers beyond
the ones specified. We then validate every member access
of __lbm_usb within the range, and forbid any memory
write operations. Finally, we rewrite the instructions accessing
__lbm_usb and map them into corresponding urb accesses.

LBM Bluetooth: The implementation for Bluetooth follows
the same procedure as for USB. We place hooks into the
Host Control Interface (HCI) layer of the Bluetooth subsystem,
as HCI talks to the Bluetooth hardware directly. While HCI
provides the lowest-level of packet abstraction for the upper
layers, it is not easy for normal users to interact with this
layer since it lacks support for high-level protocol elements
which are better known to Bluetooth users, such as connec-
tions and device addresses. To alleviate this semantic gap,
we add another set of hooks into the Logical Link Control
and Adaptation Protocol (L2CAP) layer right above HCI,
as shown in Figure 5. These hooks are effectively calls to
lbm_filter_pkt, as demonstrated below:

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH,
LBM_DIR_TX, (void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH,
LBM_DIR_RX, (void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH_L2CAP,
LBM_DIR_TX, (void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH_L2CAP,
LBM_DIR_RX, (void *)skb);

The Bluetooth packet is encapsulated in a socket buffer, or
skb in Kernel parlance, for both the HCI and the L2CAP
layers. During our development, we encountered two chal-
lenges while hooking the TX path of L2CAP. Unlike the RX
path, the L2CAP layer does not provide a single function to
send out L2CAP packets. Even worse, because of different
Maximum Transmission Unit (MTU) sizes between HCI and
L2CAP, an L2CAP packet is usually fragmented during packet
construction before being sent to the lower layer. One so-
lution would be to place LBM hooks inside every function
on the TX path and reassemble the packet there. Besides
the code duplication, the major fault in this solution is the
maintenance burden of adding hooks to new TX functions.
To solve these challenges, we deploy only one LBM hook at
the Asynchronous Connection-Less (ACL) layer within HCI,
reassemble the original L2CAP packet there, all while fully
covering all TX cases used by the L2CAP layer, The hook
placement relative to the Bluetooth stack is shown in Figure 5.
Note that the RX path still has the LBM hook inside the
L2CAP layer, as the kernel has taken care of the packet
reassembly already.

As shown in Table III, we expose 30 and 28 protocol fields
from HCI and L2CAP layers, respectively. Note that both
layers share the same 12 fields related with connections. For a
HCI packet, a BPF helper is provided to check if a connection
is established (indicated by the availability of these fields). For
L2CAP, a connection is always established. We also implement
29 and 27 BPF helpers, which help retrieve the value of
exposed fields. As with the USB subsystem, we enumerate all
the legal BPF helpers that can be called within the Bluetooth
subsystem, and restrict the memory write operations in the
verifier.

B. LBM User Space
LBMTOOL is responsible for compiling LBM rules to eBPF

programs and loading them into the kernel. Programs pass
through standard compilation stages before ending up in the
kernel as compiled eBPF. To begin, we tokenize and parse the
input LBM program. To simplify these initial steps we use
Lark, a dependency-free Python library that supports LALR(1)
grammars written in EBNF syntax. Lark processes our LBM
rule grammar and creates a working standalone parser. Once
programs are lexed they parsed into a Concrete Syntax Tree
(CST), also known as a parse tree [4]. The raw parse tree is
then shaped and canonicalized via multiple steps to a friendlier
representation known as an Abstract Syntax Tree (AST). This
steps include symbol (e.g., usb.idProduct) resolution, type
checking, and expression flattening. After processing, the AST
more accurately represents the LBM language semantics and
is flattened into a low-level Intermediate Representation (IR)
for backend processing.

Our IR is modeled off of Three-Address Code (TAC) [4],
and it has a close mapping to the DSL semantics. Additionally,
we ensure that our IR conforms to Static Single Assignment
(SSA) form to simplify register allocation and any late IR
optimization passes. Once we have optimized our IR, it

7
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APPENDIX

A. Frontend Grammar

hexpri ::= hlogical-ori

hlogical-ori ::= hlogical-andi (‘||’ hlogical-andi)*

hlogical-andi ::= hcomparisoni (‘&&’ hcomparisoni)*

hcomparisoni ::= hatomi (hcomparison-opi hatomi)*

hcomparison-opi ::= ‘<’ | ‘>’ | ‘<=’ | ‘>=’ | ‘==’ | ’!=’

haccessi ::= ‘[’ hnumberi ‘:’ hnumberi ‘]’

hattributei ::= ‘.’ hIDENTIFIERi

hstructi ::= hIDENTIFIERi hattributei* haccessi?

hnumberi ::= hDEC_NUMBERi | hHEX_NUMBERi

hstringi ::= hSTRINGi

hatomi ::= hnumberi | ‘-’ hnumberi
| hstructi
| hstringi
| ‘(’ hexpri ‘)’

hDEC_NUMBERi ::= hDIGITi+

hHEX_NUMBERi ::= ‘0x’ hHEXDIGITi+

hLETTERi ::= ‘a’ ... ‘z’ | ‘A’ ... ‘Z’

hSTRINGi ::= ‘"’ (‘\"’ | /[^‘"’]/)* ‘"’

hDIGITi ::= ‘0’...‘9’

hHEXDIGITi ::= ‘a’ ... ‘f’ | ‘A’ ... ‘F’ | hDIGITi

hIDENTIFIERi ::= (‘_’ | hLETTERi) ( ‘_’ | hLETTERi | hDIGITi)*

Figure 10: The Extended Backus-Naur Form (EBNF) of our
constructed LBM expression grammar.

B. Compiler Example

LBM Program
usb.idVendor == 0x413c && usb.idProduct == 0x3010

Intermediate Representation
0: t1 := call(lbm_usb_get_idVendor)
1: t0 := binop(EQ, t1, 16700)
2: t3 := call(lbm_usb_get_idProduct)
3: t2 := binop(EQ, t3, 12304)
4: t4 := binop(AND, t0, t2)

eBPF Assembly
LSTART:

MOV64_REG(REG_9, REG_1)
MOV64_REG(REG_1, REG_9)
CALL_FUNC(FUNC_lbm_usb_get_idVendor)
MOV64_REG(REG_1, REG_0)
MOV64_IMM(REG_6, 1)
JMP_IMM(JEQ, REG_1, 16700, L1_)
MOV64_IMM(REG_6, 0)

L1_:
MOV64_REG(REG_1, REG_9)
CALL_FUNC(FUNC_lbm_usb_get_idProduct)
MOV64_REG(REG_2, REG_0)
MOV64_IMM(REG_3, 1)
JMP_IMM(JEQ, REG_2, 12304, L2_)
MOV64_IMM(REG_3, 0)

L2_:
JMP_IMM(JEQ, REG_6, 0, L3_)
JMP_IMM(JEQ, REG_3, 0, L3_)
MOV64_IMM(REG_4, 1)
JMP_A(L4_)

L3_: MOV64_IMM(REG_4, 0)
L4_:

JMP_IMM(JNE, REG_4, 0, L5_)
L6_: MOV64_IMM(REG_0, 0)

EXIT_INSN()
L5_: MOV64_IMM(REG_0, 1)
LEND: EXIT_INSN()

Figure 11: The compilation stages of an LBM expression.

C. lmbench
Table VII presents the complete summary of lmbench

results from Section V-D We use lmbench to benchmark
the whole system across different kernel configurations and
demonstrate that LBM does indeed introduce minimal over-
head across the whole system.
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usb.idVendor == 0x413c && 
usb.idProduct == 0x3010

Support/Solution usbfilter USBFirewall LBM
Filter Mechanism C C eBPF
User-space DSL CNF N/A pcap-filter

Acceleration Short Circuit N/A JIT

Table II: LBM vs. usbfilter vs. USBFirewall, specifically with
respect to filter design of each.

eBPF 
Program

Parse Semantic
Analysis

Tree
Shaping

IRGenCodeGen

CSTExpr

ASTIR

lbmtool

Loader
sysfs

sys_bpf

write

call

Figure 3: The flow of LBMTOOL in compiling LBM rules to
eBPF and loading them into the running kernel.

skb for Bluetooth). Once this LBM hook is placed into a
peripheral subsystem, developers can write an LBM module
to filter packets either using typical C programming or loading
eBPF programs, by implementing the TX and/or RX callbacks:

int (*lbm_ingress_hook)(void *pkt)
int (*lbm_egress_hook)(void *pkt)

A more interesting and useful extension is to expose some
packet fields to the user space, and implement BPF helpers as
backends to provide data access to these fields if needed (as
we have done for USB and Bluetooth). As a result, lbmtool
can generate a new dialect for the new peripheral based on a
tcpdump-like packet filtering language. Users can then write
filtering rules as they would for tcpdump instead of directly
crafting eBPF instructions. The design of the LBM framework
and the introduction of a high-level packet filter language help
achieve G5 – flexibility/extensibility.

Besides the verifiability of eBPF programs, we choose eBPF
as the filtering mechanism in LBM as a balance between
performance and programmability. As shown in Table II,
both usbfilter and USBFirewall rely on hardcoded C com-
piled into the kernel to implement the filter mechanism.
Although USBFirewall leverages the Haskell description of
the specification to generate the C code, it lacks support for
a user-space DSL (Domain Specific Language). Instead of
implementing the filters directly, LBM builds an eBPF running
environment for peripherals and executes eBPF programs as
filters. Thanks to JIT compilation of eBPF code, LBM is able
to run filters as fast as native instructions, thus achieving G7
– high performance. As opposed to the CNF-style DSL used
by usbfilter, we design our DSL based on pcap-filter language
and elaborate it in the following section.

D. LBM User Space
To interact with an LBM-enabled kernel we design LBM-

TOOL, a frontend utility to interact with the LBM kernel driver.
Its primary purpose is to compile, load, and manage LBM
programs resident in the kernel. To create a unified, simple,
and expressive way of describing peripheral filtering rules, we
develop a custom Domain Specific Language (DSL) modeled
off of Wireshark and tcpdump filter expressions. These LBM
rules are processed by LBMTOOL using a custom compiler that
emits eBPF filter programs, as shown in Figure 3. Compiled
filters are then loaded into the LBM framework via an exten-
sion to the sys_bpf syscall. Programs are then loaded into
a specific subsystem: USB, Bluetooth, or NFC.

The filter syntax we develop is concisely described by the
grammar shown in Appendix A. Filter rules are effectively
stateless expressions that abstract away from the eBPF lan-
guage syntax. For example, if we want to match on a specific
USB device’s vendor and product ID, such as a Dell optical
mouse, we would write:

usb.idVendor == 0x413c && usb.idProduct == 0x3010

If we want to include more than one Dell product, we could
write multiple rules, or we could consolidate them into a larger
expression. To match on a Dell mouse, keyboard, printer, and
Bluetooth adapter, we would write:

usb.idVendor == 0x413c && (
usb.idProduct == 0x3010 || // Mouse
usb.idProduct == 0x2003 || // Keyboard
usb.idProduct == 0x5300 || // Printer
usb.idProduct == 0x8501 // Bluetooth adapter

)

The LBMTOOL compiler supports multi-line nested sub-
expressions while following the C 89 Standard operator prece-
dence rules [5].

With a compiled LBM program, LBMTOOL is able to load it
into a target subsystem egress (OUTPUT) or ingress (INPUT)
path and specify a match action (i.e., ACCEPT or DROP). The
following usage has LBMTOOL compile and load a filter rule:

lbmtool --expression "usb.idProduct == 0x3010"
-o mouse.lbm

lbmtool --load mouse.lbm -t usb -A INPUT -j
ACCEPT

By providing descriptive error-checking in LBMTOOL and
developing a custom DSL that is easy to write in and reason
about, we satisfy G6 – usability.

IV. IMPLEMENTATION

A. LBM Kernel Infrastructure
We divide the implementation of the LBM kernel

infrastructure into three parts: the core, USB implementation,
and Bluetooth implementation. All LBM specific code is
located under the security/lbm directory of the Linux
kernel source tree, as a new security component for the Linux
kernel.

LBM Core: To load an eBPF program into LBM, we extend
the existing bpf syscall, sys_bpf. We define a new program

5
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NFC Kernel lbmtool Total
# of lines 85 12 97

Table IV: The number of lines added to support NFC.

LBM Rule Purpose # of Insn Scope
USB-1 Stack Protection 72 Micro/Macro BM
USB-2 Stack Protection 25 Micro/Macro BM
USB-3 User Defined 22 Scalability BM
HCI-1 Stack Protection 81 Micro/Macro BM

L2CAP-1 Stack Protection 76 Micro/Macro BM

Table V: Details about the five LBM rules used during the
benchmarks.

Subsystem Min Max Avg Med Dev
USB 0.29 11.18 1.26 1.83 0.44

0.12 8.87 0.55 0.28 0.33
Bluetooth-HCI 1.16 17.87 2.81 2.70 0.62

0.27 15.67 0.98 0.77 0.47
Bluetooth-L2CAP 1.32 25.87 2.93 2.99 0.67

0.44 23.76 1.15 1.26 0.53

Table VI: LBM overhead in µs based on processing 10K
packets on the RX path. For each subsystem, the 1st row is
for normal LBM and the 2nd row is for LBM-JIT. In most
cases, the overhead of is within 1 µs.

header file. The message type is implemented as a BPF helper
calling other NCI APIs.

Step 3: Enhancing lbmtool. LBMTOOL is easily extensible
for new protocols, as we do for NFC. The internal LBM-
rule code generation backend is abstracted from the specific
subsystem the rules will apply to. As such, the only changes
required to support NFC are to include a symbol descriptor
table for each variable exposed to eBPF by the kernel. Once
these changes are incorporated, LBMTOOL generates compil-
able eBPF containing NFC helpers and context references.

B. Benchmark Setup
All the benchmarks were performed on a workstation with

a 4-core Intel i5 CPU running at 3.2 GHz and 8 GB memory.
The testing peripheral devices include a 300 Mbps USB
2.0 WiFi adapter, a Bluetooth 4.0 USB 2.0 adapter, and a
500 GB USB 3.0 external storage device. Depending on the
benchmark, some subset of devices were connected.

We list all the LBM rules used during the benchmarks
in Table V. We deploy all the rules on the RX path, since our
protection target is the host machine. In addition to the “Stack
Protection” rules mentioned in the case studies, we include
“USB-3”, a user defined rule similar to usb.serial == "7777"

which drops the USB packet if the sending device’s serial
number is 7777. As no devices have a serial number matching
this pattern, we use this rule to exhibit worst-case timing (i.e.,
no early exit while filtering) for the scalability benchmark.

C. Micro-Benchmark
For USB testing, we load LBM rules “USB-1” and “USB-

2” into the system. We then capture 10K USB packets on the
RX path from the WiFi adapter. As shown in the first two

Figure 6: filebench across different kernel configurations.
All configurations achieve similar throughputs, meaning a
minimum performance impact from LBM.

rows of Table VI, the average overhead is 1.26 µs per packet.
When JIT is enabled, overhead is reduced to 0.55 µs.

For Bluetooth testing, we load LBM rules “HCI-1” and
“L2CAP-1” into the system. We implement a simple L2CAP
client/server protocol based on PyBluez [1] to generate 10K
packets on the RX path for the HCI and L2CAP layers,
respectively. As shown in the last four rows of Table VI, the
average overheads are 2.81 µs for HCI and 2.93 µs for L2CAP.
Again, with the help of JIT, we can reduce the overhead to
around 1 µs.

Takeaway: the general overhead introduced by LBM is
around 1 µs for most cases.

D. Macro-Benchmark
For USB, we load the rules “USB-1” and “USB-2" and use

filebench [42] to measure the throughput of the USB 3.0
external storage device. We chose the “fileserver” workload
model with 10K files, 128KB and 1MB mean file sizes, 10
working threads, and a 10 minute running time. This workload
generates roughly 1GB and 10GB files, respectively, within the
storage device. As shown in Figure 6, all kernel configurations
achieve similar throughput during our testing. When the mean
file size is 128KB, the total file size (1 GB) can easily fit into
the system page cache. Thus, we are able to achieve close to
500 MB/s throughput (faster than the hard drive’s maximum
speed of 150 MB/s). When the mean file size is 1MB, the total
file size (10 GB) cannot completely fit into the page cache,
thus resulting in much lower throughput.

For Bluetooth, we load the rules “HCI-1” and “L2CAP-
1” and use l2ping [41] to benchmark the Round-Trip-Time
(RTT) for 10K pings. As with the USB testing, all kernel
configurations achieve similar RTTs of around 5 ms, as shown
in Figure 7. Because the overhead of LBM is under 1 µs in
general (Section V-C), the overhead contributed to the RTT
measurement is negligible.

To double-check that LBM introduces a minimal overhead
across the whole system, we use lmbench [47] to benchmark
the whole system across different kernel configurations. The
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NFC Kernel lbmtool Total
# of lines 85 12 97

Table IV: The number of lines added to support NFC.

- 6. To defend against BlueBorne attacks, all we need is
to make sure (cmd.len - 6) < 60. Therefore, our rule,
which is written to drop any configuration response larger
than 66 bytes, will put a stop to BlueBorne. The above
two rules demonstrate that LBM provides dynamic patching
capability to protocol stacks within the kernel without waiting
for kernel patching or firmware updates.

NFC Support: To further show the generality of LBM, we
extend LBM to support NFC. Unlike Bluetooth, NFC has three
different standards (software interfaces) for communicating
with NFC modules, including HCI [27], NCI [58], and Dig-
ital [57]. As a proof-of-concept, we focus on NCI, exposing
two protocol fields and implementing one BPF helper. The
number of additional lines of code added to the kernel and
LBMTOOL to make LBM support NFC is shown in Table IV.

Step 1: Placing LBM hooks. NCI provides unique interfaces
to cover both TX and RX transmission: nci_send_frame
and nci_recv_frame. As for other networking subsystems,
skb is used to carry NFC packets. We place the following
LBM hooks at the two interfaces:

lbm_filter_pkt(LBM_SUBSYS_INDEX_NFC, LBM_DIR_TX,
(void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_NFC, LBM_DIR_RX,
(void *)skb);

Step 2: Exposing protocol fields. We expose the packet
length (nfc.nci.len) and message type (nfc.nci.mt)
fields to the user space. The packet length is a member of
the struct __lbm_nfc exposed in the LBM user-space
header file. The message type is implemented as a BPF helper
calling other NCI APIs.

Step 3: Enhancing lbmtool. LBMTOOL is easily extensible
for new protocols, as we do for NFC. The internal LBM-
rule code generation backend is abstracted from the specific
subsystem the rules will apply to. As such, the only changes
required to support NFC are to include a symbol descriptor
table for each variable exposed to the user space by the kernel.
Once these changes are incorporated, LBMTOOL accepts LBM
filters with NFC protocol fields and compiles them into eBPF
instructions.

B. Benchmark Setup

All the benchmarks were performed on a workstation with
a 4-core Intel i5 CPU running at 3.2 GHz and 8 GB memory.
The testing peripheral devices include a 300 Mbps USB
2.0 WiFi adapter, a Bluetooth 4.0 USB 2.0 adapter, and a
500 GB USB 3.0 external storage device. Depending on the
benchmark, some subset of devices were connected.

We list all the LBM rules used during the benchmarks
in Table V. We deploy all the rules on the RX path, since our
protection target is the host machine. In addition to the “Stack

LBM Rule Purpose # of Insn Scope
USB-1 Stack Protection 72 Micro/Macro BM
USB-2 Stack Protection 25 Micro/Macro BM
USB-3 User Defined 22 Scalability BM
HCI-1 Stack Protection 81 Micro/Macro BM

L2CAP-1 Stack Protection 76 Micro/Macro BM

Table V: Details about the five LBM rules used during the
benchmarks.

Subsystem Min Max Avg Med Dev
USB 0.29 11.18 1.26 1.83 0.44

0.12 8.87 0.55 0.28 0.33
Bluetooth-HCI 1.16 17.87 2.81 2.70 0.62

0.27 15.67 0.98 0.77 0.47
Bluetooth-L2CAP 1.32 25.87 2.93 2.99 0.67

0.44 23.76 1.15 1.26 0.53

Table VI: LBM overhead in µs based on processing 10K
packets on the RX path. For each subsystem, the 1st row is
for normal LBM and the 2nd row is for LBM-JIT. In most
cases, the overhead of is within 1 µs when JIT is enabled.

Protection” rules mentioned in the case studies, we include
“USB-3”, a user defined rule similar to usb.serial == "7777"

which drops the USB packet if the sending device’s serial
number is 7777. As no devices that we test have a serial
number matching this pattern, we mainly use this rule for the
scalability benchmark.

C. Micro-Benchmark
For USB testing, we load LBM rules “USB-1” and “USB-

2” into the system. We then capture 10K USB packets on the
RX path from the WiFi adapter. As shown in the first two
rows of Table VI, the average overhead is 1.26 µs per packet.
When JIT is enabled, the overhead is reduced to 0.55 µs.

For Bluetooth testing, we load LBM rules “HCI-1” and
“L2CAP-1” into the system. We implement a simple L2CAP
client/server protocol based on PyBluez [1] to generate 10K
packets on the RX path for the HCI and L2CAP layers,
respectively. As shown in the last four rows of Table VI, the
average overheads are 2.81 µs for HCI and 2.93 µs for L2CAP.
Again, with the help of JIT, we can reduce the overhead to
around 1 µs.

Takeaway: the general overhead introduced by LBM is
around 1 µs for most cases.

D. Macro-Benchmark
For USB, we load the rules “USB-1” and “USB-2" and use

filebench [48] to measure the throughput of the USB 3.0
external storage device. We chose the “fileserver” workload
model with 10K files, 128KB and 1MB mean file sizes, 10
working threads, and 10-min running time. This workload
generates roughly 1GB and 10GB files, respectively, within the
storage device. As shown in Figure 6, all kernel configurations
achieve similar throughput during our testing. When the mean
file size is 128KB, the total file size (1 GB) can easily fit into
the system page cache. Thus, we are able to achieve close to
500 MB/s throughput (faster than the hard drive’s maximum
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moves to the eBPF code generator. There we allocate registers
and translate each IR instruction to the corresponding eBPF
instructions. Our register allocator maps an infinite number
of virtual registers from our SSA IR to a fixed number of
eBPF physical registers. To do this, it builds an interference
graph [20] of the IR statements in the program. This graph
encodes the lifetime of each virtual register throughout the
program and aids in quickly selecting appropriate physical
registers during the allocation process. With registers allo-
cated, each IR statement is processed in order by the eBPF
code generation backend to emit assembly instructions. With
machine code emitted, any remaining control transfer labels
are resolved by a final two-pass assembly step. The resulting
eBPF code is packaged into a LBM object file with metadata
for loading into the kernel. For an example of the compiler’s
output at each stage, visit Appendix B.

V. EVALUATION

We first demonstrate that how users can write simple LBM
rules to protect protocol stacks and defend against known
attacks, covering both USB and Bluetooth. We then show how
to extend LBM to support NFC and provide a PoC implemen-
tation. Benchmark sections include our testing setup, micro-
benchmark (providing LBM overhead per packet), macro-
benchmark (providing LBM overhead from application- and
system- wise), and scalability (covering 100 LBM rules and
comparing LBM with other solutions).

A. Case Studies
Kernel Protocol Stack Protection: To protect the USB
protocol stack within the kernel like USBFirewall does, we
extract the constraints from the USB specification and rewrite
them using LBMTOOL. For example, to ensure the response
of a Get_Descriptor request is well-formed during the
enumeration phase, we write:

((usb.setup_packet != 0) && /* For enumeration */
(usb.request[0] == 0x80) && /* Get_Descriptor */
(usb.request[1] == 0x06) &&
/* Make sure response contains at least 2 bytes

*/
((usb.actual_length < 2) ||
/* Make sure the descriptor type matches */
((usb.request[3] != usb.data[1]) ||
/* Device descriptor */
((usb.request[3] == 1) && ((usb.data[0] != 18)

|| (usb.actual_length != 18))) ||
/* Configuration descriptor */
((usb.request[3] == 2) && ((usb.data[0] < 9)

|| (usb.actual_length < 9))) ||
/* String descriptor */
((usb.request[4] == 3) && ((usb.data[0] < 4)

|| (usb.actual_length < 4))))))

We first make sure the response has at least 2 bytes, for extract-
ing the length (usb.data[0]) and type (usb.data[1]) of
the response. We reject the packet if there is a type mismatch
between request and response. Depending on the type, we
then make sure the response has the minimum length required
by the specification. To fully cover all the responses during
USB enumeration, we also check the response returned by
Get_Status in a similar fashion.

To protect the Bluetooth stack within the kernel, we extract
the constraints from the Bluetooth specification and rewrite
them using LBMTOOL as follows:

/* HCI-CMD */
((bt.hci.type == 1) && (bt.hci.len < 3)) ||
/* HCI-ACL */
((bt.hci.type == 2) && (bt.hci.len < 4)) ||
/* HCI-SCO */
((bt.hci.type == 3) && (bt.hci.len < 3)) ||
/* HCI-EVT */
((bt.hci.type == 4) && (bt.hci.len < 2)))

This rule provides basic protection for the HCI layer.
Depending on the packet type, we make sure the response
has the minimum length required by the specification. We
also implemented basic protection for the L2CAP layer.

Preventing Data Leakage: In addition to propagating mal-
ware, USB storage devices are also used to steal sensitive
information from a computer. To tackle this threat, usbfilter
implemented a plugin to drop the SCSI write command on
the TX path, thus preventing any data from being written into
a connected USB storage device; this plugin mechanism is
referred to as Linux Usbfilter Module (LUM).

Recall LBM is designed to support the features of existing
solutions, including usbfilter’s LUM, for sake of generality.
We were able to port the SCSI-write-drop LUM to LBM with
only around 10 lines of code changes (primarily adjusting
naming of callbacks and header files). In fact, any LUM can
be ported to LBM with similarly minimal changes.

Trusted Input Devices: One of the most common BadUSB
attacks is the human interface device (HID)-based attack,
where a malicious USB device behaves like a keyboard and
injects keystrokes into the host machine. With LBM, we
can write a rule specifying a trusted input device, such that
keystrokes from all other input devices are dropped, as follows:

((usb.pipe == 1) && /* INT (Keystroke) */
((usb.manufacturer != "X") ||
(usb.product != "Y") ||
(usb.serial != "Z") ||
(usb.plugtime != 12345)))

For all keystrokes, we check against the expected
manufacturer, product, and serial number of the trusted input
device. This rules out any devices from different vendors or
different device models. In case the malicious device is able
to spoof its identity, we also include the plugging timestamp
of the device as part of the rule matching. Therefore, even
if the malicious device were able to mimic the identity of
the trusted input device, the malicious keystroke would be
dropped because the plugging timestamp would differ.

Securing USB Charging: A well-known defense against
BadUSB attacks by USB chargers is the USB condom [66],
which physically disconnects the USB data pins (D+/-) in the
connection. Unfortunately, this prevents phones that support
USB Battery Charging [55] from drawing extra power via the
data wires, except the one provided by VBus. As a result,

8
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moves to the eBPF code generator. There we allocate registers
and translate each IR instruction to the corresponding eBPF
instructions. Our register allocator maps an infinite number
of virtual registers from our SSA IR to a fixed number of
eBPF physical registers. To do this, it builds an interference
graph [20] of the IR statements in the program. This graph
encodes the lifetime of each virtual register throughout the
program and aids in quickly selecting appropriate physical
registers during the allocation process. With registers allo-
cated, each IR statement is processed in order by the eBPF
code generation backend to emit assembly instructions. With
machine code emitted, any remaining control transfer labels
are resolved by a final two-pass assembly step. The resulting
eBPF code is packaged into a LBM object file with metadata
for loading into the kernel. For an example of the compiler’s
output at each stage, visit Appendix B.

V. EVALUATION

We first demonstrate that how users can write simple LBM
rules to protect protocol stacks and defend against known
attacks, covering both USB and Bluetooth. We then show how
to extend LBM to support NFC and provide a PoC implemen-
tation. Benchmark sections include our testing setup, micro-
benchmark (providing LBM overhead per packet), macro-
benchmark (providing LBM overhead from application- and
system- wise), and scalability (covering 100 LBM rules and
comparing LBM with other solutions).

A. Case Studies
Kernel Protocol Stack Protection: To protect the USB
protocol stack within the kernel like USBFirewall does, we
extract the constraints from the USB specification and rewrite
them using LBMTOOL. For example, to ensure the response
of a Get_Descriptor request is well-formed during the
enumeration phase, we write:

((usb.setup_packet != 0) && /* For enumeration */
(usb.request[0] == 0x80) && /* Get_Descriptor */
(usb.request[1] == 0x06) &&
/* Make sure response contains at least 2 bytes

*/
((usb.actual_length < 2) ||
/* Make sure the descriptor type matches */
((usb.request[3] != usb.data[1]) ||
/* Device descriptor */
((usb.request[3] == 1) && ((usb.data[0] != 18)

|| (usb.actual_length != 18))) ||
/* Configuration descriptor */
((usb.request[3] == 2) && ((usb.data[0] < 9)

|| (usb.actual_length < 9))) ||
/* String descriptor */
((usb.request[4] == 3) && ((usb.data[0] < 4)

|| (usb.actual_length < 4))))))

We first make sure the response has at least 2 bytes, for extract-
ing the length (usb.data[0]) and type (usb.data[1]) of
the response. We reject the packet if there is a type mismatch
between request and response. Depending on the type, we
then make sure the response has the minimum length required
by the specification. To fully cover all the responses during
USB enumeration, we also check the response returned by
Get_Status in a similar fashion.

To protect the Bluetooth stack within the kernel, we extract
the constraints from the Bluetooth specification and rewrite
them using LBMTOOL as follows:

/* HCI-CMD */
((bt.hci.type == 1) && (bt.hci.len < 3)) ||
/* HCI-ACL */
((bt.hci.type == 2) && (bt.hci.len < 4)) ||
/* HCI-SCO */
((bt.hci.type == 3) && (bt.hci.len < 3)) ||
/* HCI-EVT */
((bt.hci.type == 4) && (bt.hci.len < 2)))

This rule provides basic protection for the HCI layer.
Depending on the packet type, we make sure the response
has the minimum length required by the specification. We
also implemented basic protection for the L2CAP layer.

Preventing Data Leakage: In addition to propagating mal-
ware, USB storage devices are also used to steal sensitive
information from a computer. To tackle this threat, usbfilter
implemented a plugin to drop the SCSI write command on
the TX path, thus preventing any data from being written into
a connected USB storage device; this plugin mechanism is
referred to as Linux Usbfilter Module (LUM).

Recall LBM is designed to support the features of existing
solutions, including usbfilter’s LUM, for sake of generality.
We were able to port the SCSI-write-drop LUM to LBM with
only around 10 lines of code changes (primarily adjusting
naming of callbacks and header files). In fact, any LUM can
be ported to LBM with similarly minimal changes.

Trusted Input Devices: One of the most common BadUSB
attacks is the human interface device (HID)-based attack,
where a malicious USB device behaves like a keyboard and
injects keystrokes into the host machine. With LBM, we
can write a rule specifying a trusted input device, such that
keystrokes from all other input devices are dropped, as follows:

((usb.pipe == 1) && /* INT (Keystroke) */
((usb.manufacturer != "X") ||
(usb.product != "Y") ||
(usb.serial != "Z") ||
(usb.plugtime != 12345)))

For all keystrokes, we check against the expected
manufacturer, product, and serial number of the trusted input
device. This rules out any devices from different vendors or
different device models. In case the malicious device is able
to spoof its identity, we also include the plugging timestamp
of the device as part of the rule matching. Therefore, even
if the malicious device were able to mimic the identity of
the trusted input device, the malicious keystroke would be
dropped because the plugging timestamp would differ.

Securing USB Charging: A well-known defense against
BadUSB attacks by USB chargers is the USB condom [66],
which physically disconnects the USB data pins (D+/-) in the
connection. Unfortunately, this prevents phones that support
USB Battery Charging [55] from drawing extra power via the
data wires, except the one provided by VBus. As a result,
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fully charging a phone may take 15X the normal time to
charge when using USB condom. Neither is a USB condom-
like device available for USB Type-C. With the help of LBM,
we could instead implement a software USB condom easily:

((usb.busnum == 1) && (usb.portnum == 1))

After applying this LBM rule to the RX path, we are able
to drop any data transmission from the physical USB port
1 under bus 1, thus making the port charge-only for any
connections. This LBM rule does not interfere with USB
Battery Charging, since the data wires are still physically
connected, and can be applied to any physical USB port,
regardless of whether or not it is a Type-C port.

Securing Bluetooth Invisible Mode: To prevent a Bluetooth
device from being scanned by another (potentially) malicious
device, such as during a Blueprinting [33] or BlueBag [19]
attack, the Bluetooth specification introduced discoverable
and non-discoverable modes to devices. A device in non-
discoverable mode does not respond to inquires from other
devices, thus hiding its presence from outsiders. On one hand,
the toggling of this mode can be controlled from the user
space, (e.g., using bluetoothctl, which should require
root permission). On the other hand, any vulnerabilities within
these user-space daemons and tools, once exploited, might put
the device into discoverable mode again. To prevent this, we
could define a LBM rule as follows:

((bt.hci.type == 1) && /* HCI-CMD */
(bt.hci.command.ogf == 3) && /* Discoverable */
(bt.hci.command.ocf == 58))

This rule detects the HCI command used to enable the
device’s discoverable mode. Once applied to the TX path,
the rule drops any request from the user space attempting
to put the device into discoverable mode. We could write a
similar rule to enforce non-connectable mode, which is used
to prevent any Bluetooth connection to the device even if its
MAC address is known beforehand.

Controlling Bluetooth/BLE Connections: Along with the
booming of IoT devices, which primarily rely on Bluetooth
Low Energy (BLE) as they are unable to support classic Blue-
tooth, Android devices began to support BLE since version
4.3 [8], while iOS added BLE support with the iPhone 4S.
The Linux kernel Bluetooth stack (BlueZ [40]) also supports
both classic Bluetooth and BLE at the same time.

Although it is not uncommon to see a dual-mode device sup-
porting both Bluetooth and BLE, it is surprisingly challenging
(if not impossible) to enable only one of them while disabling
the other. [15] With LBM, enabling/disabling Bluetooth or
BLE connections is just a one-liner:

((bt.hci.conn == 1) && /* A link exists */
(bt.hci.conn.type == 0x80)) /* BLE link */

This LBM rule checks the connection type for each
Bluetooth or BLE packet, and drops the packet if the
connection is BLE, thus preventing unfamiliar IoT devices

from establishing a connection while still allowing classic
Bluetooth connections. Simply changing == 0x80 to !=
0x80 achieves the opposite effect, only permitting BLE
connections and thus providing a temporary defense against
BlueBorne attacks [11].

Defending Against BlueBorne: BlueBorne attacks exploit
vulnerabilities within Bluetooth protocol stack implementa-
tions, by sending either malformed or specially crafted Blue-
tooth packets. Within the Linux kernel, this vulnerability
resulted from a missing check for the usage of a local
buffer. As a result, a crafted packet can cause a kernel stack
overflow, enabling further exploitation. Although the fix was a
straightforward one, adding the missing checks [59], applying
patches to existing devices still requires the additional steps of
rebuilding the kernel and flashing new firmware. With LBM,
we can write a simple rule to properly defend against the
potential kernel stack overflow:

((bt.l2cap.cid == 0x1) && /* L2CAP Signaling */
/* Configuration Response */
(bt.l2cap.sig.cmd.code == 0x5) &&
(bt.l2cap.sig.cmd.len >= 66))

We first pinpoint where the vulnerability was triggered,
which is at the L2CAP layer during configuration response.
Because the local buffer is 64 bytes and the first 4 bytes
are used for the header, the actual data buffer to hold
configuration options is 60 bytes. In the rule above,
bt.l2cap.sig.cmd.len denotes the total length of a
L2CAP command packet. Without counting the 6-byte header,
the actual payload size of a command packet is cmd.len
- 6. To defend against BlueBorne attacks, all we need is
to make sure (cmd.len - 6) < 60. Therefore, our rule,
which is written to drop any configuration response larger
than 66 bytes, will put a stop to BlueBorne.

NFC Support: To further show the generality of LBM, we
extend LBM to support NFC. Unlike Bluetooth, NFC has three
different standards (software interfaces) for communicating
with NFC modules, including HCI [26], NCI [52], and Dig-
ital [51]. As a proof-of-concept, we focus on NCI, exposing
two protocol fields and implementing one BPF helper. The
number of additional lines of code added to the kernel and
LBMTOOL to make LBM support NFC is shown in Table IV.

Step 1: Placing LBM hooks. NCI provides unique interfaces
to cover both TX and RX transmission: nci_send_frame
and nci_recv_frame. As for other networking subsystems,
skb is used to carry NFC packets. We place the following
LBM hooks at the two interfaces:

lbm_filter_pkt(LBM_SUBSYS_INDEX_NFC, LBM_DIR_TX,
(void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_NFC, LBM_DIR_RX,
(void *)skb);

Step 2: Exposing protocol fields. We expose the packet
length (nfc.nci.len) and message type (nfc.nci.mt)
fields to the user space. The packet length is a member of
the struct __lbm_nfc exposed in the LBM user-space
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fully charging a phone may take 15X the normal time to
charge when using USB condom. Neither is a USB condom-
like device available for USB Type-C. With the help of LBM,
we could instead implement a software USB condom easily:

((usb.busnum == 1) && (usb.portnum == 1))

After applying this LBM rule to the RX path, we are able
to drop any data transmission from the physical USB port
1 under bus 1, thus making the port charge-only for any
connections. This LBM rule does not interfere with USB
Battery Charging, since the data wires are still physically
connected, and can be applied to any physical USB port,
regardless of whether or not it is a Type-C port.

Securing Bluetooth Invisible Mode: To prevent a Bluetooth
device from being scanned by another (potentially) malicious
device, such as during a Blueprinting [33] or BlueBag [19]
attack, the Bluetooth specification introduced discoverable
and non-discoverable modes to devices. A device in non-
discoverable mode does not respond to inquires from other
devices, thus hiding its presence from outsiders. On one hand,
the toggling of this mode can be controlled from the user
space, (e.g., using bluetoothctl, which should require
root permission). On the other hand, any vulnerabilities within
these user-space daemons and tools, once exploited, might put
the device into discoverable mode again. To prevent this, we
could define a LBM rule as follows:

((bt.hci.type == 1) && /* HCI-CMD */
(bt.hci.command.ogf == 3) && /* Discoverable */
(bt.hci.command.ocf == 58))

This rule detects the HCI command used to enable the
device’s discoverable mode. Once applied to the TX path,
the rule drops any request from the user space attempting
to put the device into discoverable mode. We could write a
similar rule to enforce non-connectable mode, which is used
to prevent any Bluetooth connection to the device even if its
MAC address is known beforehand.

Controlling Bluetooth/BLE Connections: Along with the
booming of IoT devices, which primarily rely on Bluetooth
Low Energy (BLE) as they are unable to support classic Blue-
tooth, Android devices began to support BLE since version
4.3 [8], while iOS added BLE support with the iPhone 4S.
The Linux kernel Bluetooth stack (BlueZ [40]) also supports
both classic Bluetooth and BLE at the same time.

Although it is not uncommon to see a dual-mode device sup-
porting both Bluetooth and BLE, it is surprisingly challenging
(if not impossible) to enable only one of them while disabling
the other. [15] With LBM, enabling/disabling Bluetooth or
BLE connections is just a one-liner:

((bt.hci.conn == 1) && /* A link exists */
(bt.hci.conn.type == 0x80)) /* BLE link */

This LBM rule checks the connection type for each
Bluetooth or BLE packet, and drops the packet if the
connection is BLE, thus preventing unfamiliar IoT devices

from establishing a connection while still allowing classic
Bluetooth connections. Simply changing == 0x80 to !=
0x80 achieves the opposite effect, only permitting BLE
connections and thus providing a temporary defense against
BlueBorne attacks [11].

Defending Against BlueBorne: BlueBorne attacks exploit
vulnerabilities within Bluetooth protocol stack implementa-
tions, by sending either malformed or specially crafted Blue-
tooth packets. Within the Linux kernel, this vulnerability
resulted from a missing check for the usage of a local
buffer. As a result, a crafted packet can cause a kernel stack
overflow, enabling further exploitation. Although the fix was a
straightforward one, adding the missing checks [59], applying
patches to existing devices still requires the additional steps of
rebuilding the kernel and flashing new firmware. With LBM,
we can write a simple rule to properly defend against the
potential kernel stack overflow:

((bt.l2cap.cid == 0x1) && /* L2CAP Signaling */
/* Configuration Response */
(bt.l2cap.sig.cmd.code == 0x5) &&
(bt.l2cap.sig.cmd.len >= 66))

We first pinpoint where the vulnerability was triggered,
which is at the L2CAP layer during configuration response.
Because the local buffer is 64 bytes and the first 4 bytes
are used for the header, the actual data buffer to hold
configuration options is 60 bytes. In the rule above,
bt.l2cap.sig.cmd.len denotes the total length of a
L2CAP command packet. Without counting the 6-byte header,
the actual payload size of a command packet is cmd.len
- 6. To defend against BlueBorne attacks, all we need is
to make sure (cmd.len - 6) < 60. Therefore, our rule,
which is written to drop any configuration response larger
than 66 bytes, will put a stop to BlueBorne.

NFC Support: To further show the generality of LBM, we
extend LBM to support NFC. Unlike Bluetooth, NFC has three
different standards (software interfaces) for communicating
with NFC modules, including HCI [26], NCI [52], and Dig-
ital [51]. As a proof-of-concept, we focus on NCI, exposing
two protocol fields and implementing one BPF helper. The
number of additional lines of code added to the kernel and
LBMTOOL to make LBM support NFC is shown in Table IV.

Step 1: Placing LBM hooks. NCI provides unique interfaces
to cover both TX and RX transmission: nci_send_frame
and nci_recv_frame. As for other networking subsystems,
skb is used to carry NFC packets. We place the following
LBM hooks at the two interfaces:

lbm_filter_pkt(LBM_SUBSYS_INDEX_NFC, LBM_DIR_TX,
(void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_NFC, LBM_DIR_RX,
(void *)skb);

Step 2: Exposing protocol fields. We expose the packet
length (nfc.nci.len) and message type (nfc.nci.mt)
fields to the user space. The packet length is a member of
the struct __lbm_nfc exposed in the LBM user-space
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fully charging a phone may take 15X the normal time to
charge when using USB condom. Neither is a USB condom-
like device available for USB Type-C. With the help of LBM,
we could instead implement a software USB condom easily:

((usb.busnum == 1) && (usb.portnum == 1))

After applying this LBM rule to the RX path, we are able
to drop any data transmission from the physical USB port
1 under bus 1, thus making the port charge-only for any
connections. This LBM rule does not interfere with USB
Battery Charging, since the data wires are still physically
connected, and can be applied to any physical USB port,
regardless of whether or not it is a Type-C port.

Securing Bluetooth Invisible Mode: To prevent a Bluetooth
device from being scanned by another (potentially) malicious
device, such as during a Blueprinting [33] or BlueBag [19]
attack, the Bluetooth specification introduced discoverable
and non-discoverable modes to devices. A device in non-
discoverable mode does not respond to inquires from other
devices, thus hiding its presence from outsiders. On one hand,
the toggling of this mode can be controlled from the user
space, (e.g., using bluetoothctl, which should require
root permission). On the other hand, any vulnerabilities within
these user-space daemons and tools, once exploited, might put
the device into discoverable mode again. To prevent this, we
could define a LBM rule as follows:

((bt.hci.type == 1) && /* HCI-CMD */
(bt.hci.command.ogf == 3) && /* Discoverable */
(bt.hci.command.ocf == 58))

This rule detects the HCI command used to enable the
device’s discoverable mode. Once applied to the TX path,
the rule drops any request from the user space attempting
to put the device into discoverable mode. We could write a
similar rule to enforce non-connectable mode, which is used
to prevent any Bluetooth connection to the device even if its
MAC address is known beforehand.

Controlling Bluetooth/BLE Connections: Along with the
booming of IoT devices, which primarily rely on Bluetooth
Low Energy (BLE) as they are unable to support classic Blue-
tooth, Android devices began to support BLE since version
4.3 [8], while iOS added BLE support with the iPhone 4S.
The Linux kernel Bluetooth stack (BlueZ [40]) also supports
both classic Bluetooth and BLE at the same time.

Although it is not uncommon to see a dual-mode device sup-
porting both Bluetooth and BLE, it is surprisingly challenging
(if not impossible) to enable only one of them while disabling
the other. [15] With LBM, enabling/disabling Bluetooth or
BLE connections is just a one-liner:

((bt.hci.conn == 1) && /* A link exists */
(bt.hci.conn.type == 0x80)) /* BLE link */

This LBM rule checks the connection type for each
Bluetooth or BLE packet, and drops the packet if the
connection is BLE, thus preventing unfamiliar IoT devices

from establishing a connection while still allowing classic
Bluetooth connections. Simply changing == 0x80 to !=
0x80 achieves the opposite effect, only permitting BLE
connections and thus providing a temporary defense against
BlueBorne attacks [11].

Defending Against BlueBorne: BlueBorne attacks exploit
vulnerabilities within Bluetooth protocol stack implementa-
tions, by sending either malformed or specially crafted Blue-
tooth packets. Within the Linux kernel, this vulnerability
resulted from a missing check for the usage of a local
buffer. As a result, a crafted packet can cause a kernel stack
overflow, enabling further exploitation. Although the fix was a
straightforward one, adding the missing checks [59], applying
patches to existing devices still requires the additional steps of
rebuilding the kernel and flashing new firmware. With LBM,
we can write a simple rule to properly defend against the
potential kernel stack overflow:

((bt.l2cap.cid == 0x1) && /* L2CAP Signaling */
/* Configuration Response */
(bt.l2cap.sig.cmd.code == 0x5) &&
(bt.l2cap.sig.cmd.len >= 66))

We first pinpoint where the vulnerability was triggered,
which is at the L2CAP layer during configuration response.
Because the local buffer is 64 bytes and the first 4 bytes
are used for the header, the actual data buffer to hold
configuration options is 60 bytes. In the rule above,
bt.l2cap.sig.cmd.len denotes the total length of a
L2CAP command packet. Without counting the 6-byte header,
the actual payload size of a command packet is cmd.len
- 6. To defend against BlueBorne attacks, all we need is
to make sure (cmd.len - 6) < 60. Therefore, our rule,
which is written to drop any configuration response larger
than 66 bytes, will put a stop to BlueBorne.

NFC Support: To further show the generality of LBM, we
extend LBM to support NFC. Unlike Bluetooth, NFC has three
different standards (software interfaces) for communicating
with NFC modules, including HCI [26], NCI [52], and Dig-
ital [51]. As a proof-of-concept, we focus on NCI, exposing
two protocol fields and implementing one BPF helper. The
number of additional lines of code added to the kernel and
LBMTOOL to make LBM support NFC is shown in Table IV.

Step 1: Placing LBM hooks. NCI provides unique interfaces
to cover both TX and RX transmission: nci_send_frame
and nci_recv_frame. As for other networking subsystems,
skb is used to carry NFC packets. We place the following
LBM hooks at the two interfaces:

lbm_filter_pkt(LBM_SUBSYS_INDEX_NFC, LBM_DIR_TX,
(void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_NFC, LBM_DIR_RX,
(void *)skb);

Step 2: Exposing protocol fields. We expose the packet
length (nfc.nci.len) and message type (nfc.nci.mt)
fields to the user space. The packet length is a member of
the struct __lbm_nfc exposed in the LBM user-space
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Dynamic Kernel Patching
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Figure 6: filebench across different kernel configurations.
All configurations achieve similar throughputs, meaning a
minimum performance impact from LBM.

For Bluetooth testing, we load LBM rules “HCI-1” and
“L2CAP-1” into the system. We implement a simple L2CAP
client/server protocol based on PyBluez [1] to generate 10K
packets on the RX path for the HCI and L2CAP layers,
respectively. As shown in the last four rows of Table VI, the
average overheads are 2.81 µs for HCI and 2.93 µs for L2CAP.
Again, with the help of JIT, we can reduce the overhead to
around 1 µs.

Takeaway: the general overhead introduced by LBM is
around 1 µs for most cases.

D. Macro-Benchmark
For USB, we load the rules “USB-1” and “USB-2" and use

filebench [50] to measure the throughput of the USB 3.0
external storage device. We chose the “fileserver” workload
model with 10K files, 128KB and 1MB mean file sizes, 10
working threads, and 10-min running time. This workload
generates roughly 1GB and 10GBs of files, respectively,
within the storage device. As shown in Figure 6, all kernel
configurations achieve similar throughput during our testing.
When the mean file size is 128KB, the total file size (1 GB)
can easily fit into the system page cache. Thus, we are able
to achieve close to 500 MB/s throughput (faster than the hard
drive’s maximum speed of 150 MB/s). When the mean file
size is 1MB, the total file size (10 GB) cannot completely fit
into the page cache, thus resulting in much lower throughput.

For Bluetooth, we load the rules “HCI-1” and “L2CAP-
1” and use l2ping [49] to benchmark the Round-Trip-Time
(RTT) for 10K pings. As with the USB testing, all kernel
configurations achieve similar RTTs of around 5 ms, as shown
in Figure 7. Because the overhead of LBM is under 1 µs in
general (Section V-C), the overhead contributed to the RTT
measurement is negligible.

To double-check that LBM introduces a minimal overhead
across the whole system, we use lmbench [55] to benchmark
the whole system across different kernel configurations. The
complete summary is available in Appendix C. In short, LBM
achieves comparable performance with the vanilla kernel.

Figure 7: RTT of l2ping in milliseconds (lower is better)
based on 10K pings, across different kernel configurations. All
configurations achieve similar throughputs, meaning a minimal
performance impact from LBM.

Figure 8: LBM overhead in µs based on varying numbers of
rules. While the general overhead increases as the number of
rules increases, the overhead of going through each individual
rule decreases, thus the total overhead is essentially amortized.

Takeaway: the overhead introduced by LBM is negligible
for applications and for the system as a whole.

E. Scalability
To understand the scalability of LBM, we load the rule

“USB-3” into the RX path once, 10 times, and 100 times.
As in the micro-benchmark, we record 10K USB packets
generated by the USB WiFi adapter and compute the overhead
of LBM going through these rules for each packet. As shown
in Figure 8, while the total overhead increases as the number
of rules increases, the average overhead of checking individual
rules decreases. The average overhead was 0.83 µs when there
was only one rule loaded. It decreased to 0.32 µs when there
were 100 rules loaded. Under JIT, the overhead was further
reduced to 0.23 µs. This might be the result of increased
cache hits from accessing the same rule in a loop. Even for
different rules, it is possible to observe this amortization effect,
as long as each rule occupies a different cache line. Also, in
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LBM: Discussion
• BPF memory write
• LLVM support
• Stateless vs. Stateful policy
• DMA-oriented protocols
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Conclusion
• Linux (e)BPF Module
• USB, Bluetooth, NFC
• Effectiveness and Minimum Overhead

https://github.com/fics/lbm

https://github.com/fics/lbm
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Q&A

https://davejingtian.org 

Thanks!

https://davejingtian.org
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Malicious Peripherals
What about wireless peripherals?

5.3 Billion Devices Affected

0day attacks over NFC!
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• An eBPF client
• LBM filter = eBPF program

• Load LBM filters
• Subsystem / Path

• Verify LBM filters
• Subsystem / No memory write

• Store/Manage/Run LBM filters
• SysFS (/sys/fs/bpf, /sys/kernel/security/lbm)

LBM: Core Framework

 bpf
syscall

lbm
sysfs

BPF/eBPF

 BPF verifier

 LBM FDB RX

 LBM Filter Engine

 LBM MDB TX  LBM FDB TX
 LBM MDB RX

create_module 
syscall

LBM 
Core
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• LBM hooks
• 34 protocol fields
• 31 BPF helpers
• 621 LoC

LBM: USB USB 
Subsys

Bluetooth 
Subsys

NFC 
Subsys

LBM 
TX

Peripheral Subsystems

BPF/eBPF

lbm1

LBM
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lbmtool LLVM/
Clang
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LBM 
RX

LBM 
RX

LBM 
RX

LBM 
TX

LBM 
TX

 bpf syscall  lbm sysfs
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Figure 1: LBM Architecture.
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Figure 2: LBM hooks inside the USB subsystem.

C. LBM Kernel Infrastructure

We design LBM as a standalone kernel component/subsys-
tem statically linked into the kernel image. Since LBM cannot
be unloaded/reloaded as a kernel module, this design achieves
G2 – tamper-proofness.

For each kind of peripheral that LBM supports, we need
to place “hooks” on both the TX and RX paths to mediate
each packet being sent to and received from, respectively, the
peripheral. While different peripheral subsystems may have
different structuring of their software stack architectures within
the Linux kernel, we follow two general rules on the placement
of LBM hooks. First, these hooks should be placed close to
the real hardware controlling the corresponding peripherals.
This helps reduce the potential impact from vulnerabilities
within the upper layer of the software stack (e.g., by packets
bypassing the hooks). Second, these hooks should be general
enough without relying on the implementation of certain
hardware. As a result, we place LBM hooks beneath the core
implementation of the peripheral’s protocol stack, and above
a specific peripheral controller driver.

Take USB as an example. As shown in Figure 2, LBM
hooks are deployed right above the host controller device and
its driver, which communicates with USB peripherals directly.

Support/Solution usbfilter USBFirewall LBM
Module Plugin X X

Stack Protection X X
User-defined Rules X X
TX Path Mediation X X
RX Path Mediation X X
Bluetooth and etc. X

Table I: LBM vs. usbfilter vs. USBFirewall. LBM unifies usb-
filter and USBFirewall, providing a superset of their properties.

At the same time, they are deployed below the USB core and
other USB device drivers, preventing third-party USB drivers
from bypassing these hooks. This placement of LBM hooks
achieves G1 – complete mediation.

Since LBM allows the loading of eBPF programs into
the kernel space and executing these programs for peripheral
packet filtering, special care is needed to make sure these
programs are not introducing new vulnerabilities into the
kernel or bypassing security mechanisms enforced by the
kernel. We leverage the eBPF verifier [61] to examine each
eBPF program before it can be loaded. Unlike normal eBPF
programs (mainly used by the networking subsystem) loaded
by the bpf syscall, we forbid both bounded loop [24] and
packet rewriting (e.g., changing the port number of a TCP
packet) in LBM. Once a program passes verification, we can
be sure that the program halts after a limited number of state
transitions, that each program state is valid (e.g., no stack
overflow), and that each instruction does not change the kernel
memory (besides its own stack). We achieve G3 – verifiability
for programs executed by LBM.

LBM draws inspiration from the state-of-the-art solutions
including usbfilter [69] and USBFirewall [37], and improves
on them, as shown in Table I. Similar to usbfilter, LBM
supports kernel module plugin. As depicted in Figure 1, dif-
ferent LBM kernel modules (e.g., lbm1-lbm3) can be plugged
into the LBM framework and essentially hook into the TX
and/or RX paths for different peripherals. As we will later
show in Section V-A, it takes less than 20 lines of change
to convert a LUM (Linux Usbfilter Module) into an LBM
module. To protect protocol stacks from malformed packets,
we derive packet field constraints from specifications. Rather
than translating these constraints into C and compiling them
into the kernel image like USBFirewall, we transform them
into eBPF programs and load them on the RX paths for mal-
formed packet filtering. In short, we achieve G4 – generality,
by supporting all features provided by existing solutions and
extending support to other peripherals, such as Bluetooth.

To ease support for a new kind of peripheral, we design a
unified API used by different subsystems to hook into LBM:

int lbm_filter_pkt(
int subsys, int dir, void *pkt)

subsys determines the index of a certain peripheral subsys-
tem (e.g., 0 for USB and 1 for Bluetooth); dir specifies the
direction of the I/O path: TX or RX; and pkt points to the
core kernel data structure used to encapsulate the I/O packet
depending on different subsystems, (e.g., urb for USB and
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1 int lbm_filter_pkt(int subsys, int dir, void *pkt)
2 {
3 check_subsystem(subsys);
4 check_path(dir);
5 check_pkt(pkt);
6 res = ALLOW;
7 if (dir == TX) {
8 for_each_ebpf_in_db[subsys][dir] {
9 if (ebpf(subsys, dir, pkt) == DROP) {

10 res = DROP;
11 goto RET;
12 }}
13 for_each_kmod_in_db[subsys][dir] {
14 if (kmod(subsys, dir, pkt) == DROP) {
15 res = DROP;
16 goto RET;
17 }}
18 } else { /* Ditto for the RX */ }
19 RET:
20 return res; }

Figure 4: Pseudo-code of lbm_filter_pkt.

type BPF_PROG_LOAD_LBM to distinguish LBM calls from
other typical BPF usage. Unlike typical eBPF programs, which
only normally only persist for the lifetime of the loading
process, LBM programs must survive after LBMTOOL exits.
To extend the lifetime of these programs, we pin them using
the BPF filesystem [16], essentially using the filesystem to
increase the reference count of the object. Before a program
is loaded by the LBM core, the eBPF verifier checks every
instruction of the program for any security violations. Depend-
ing on the subsystem (e.g., USB or Bluetooth) of the program,
LBM provides different verifier callbacks, such as LBM USB
or LBM Bluetooth (as we will detail later), thus making sure
every memory access of the program is meaningful, aligned,
and safe.

Inside LBM, all eBPF programs are organized based on
the relevant subsystem and the direction of the filtering path
(i.e., TX or RX). We allow the same program to apply for
both the TX and RX paths when it is loaded using the BPF
syscall, and duplicate the program on TX and RX queues,
respectively. The separation of TX and RX paths is mainly
for performance, since it allows us to bypass programs that do
not interpose on a certain path during filtering. Additionally,
to avoid expensive locking, each program is protected by the
read-copy-update (RCU) [30] mechanism to enable concurrent
reads by different LBM subsystems. LBM modules are also
organized according to subsystem and filter path, and pro-
tected by RCU. The pseudo code of lbm_filter_pkt is
mentioned in Section III-C and presented in Figure 4.

To ease the management of LBM eBPF
programs and modules, we expose ten entries under
/sys/kernel/security/lbm/, including a global
switch to enable/disable LBM; per-subsystem switches to
enable/disable debugging, profiling, and statistics; and per-
subsystem-per-path controls to view/remove loaded programs
and modules. The whole implementation of LBM core is
around 1.6K lines of code.

Subsystem # of Fields # of BPF-helpers # of Lines
USB 34 31 621

Bluetooth-HCI 30 29 683
Bluetooth-L2CAP 28 27 744

TOTAL 92 87 2048

Table III: LBM statistics per subsystem, including # of fields
exposed to the user space, # of BPF helpers implemented, and
# of lines of code changes.

LBM USB: As shown in Figure 2, LBM hooks into the
Host Controller Device (HCD) core implementation to cover
both TX and RX paths. These hooks eventually call to
lbm_filter_pkt before the packet reaches the USB core,
as demonstrated below:

lbm_filter_pkt(LBM_SUBSYS_INDEX_USB, LBM_DIR_TX,
(void *)urb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_USB, LBM_DIR_RX,
(void *)urb);

Every USB packet (urb) then needs to go through the LBM
core for filtering before being sent to or received from USB
peripherals.

To support rules from LBMTOOL, we expose packet meta-
data maintained by the kernel and packet fields defined by
the USB specification to eBPF programs. To achieve this, a
naive approach would be to mirror the urb structure to the
userspace, while providing every field explicitly in the filter
language. Unfortunately, exposing raw kernel structures to the
userspace is a security risk as it will leak sensitive kernel
pointer values, which can be used to break Kernel ASLR [22].
Supporting every field explicitly is infeasible as well, given the
complexity of the protocol suites. As a trade-off, we expose the
most commonly recognized and used fields and provide special
BPF helpers to access the rest. These helpers allow eBPF to
support array accesses to urb structures, thus enabling eBPF
to access every field within a USB packet.

As shown in Table III, we expose 34 fields and implement
31 BPF helpers for the USB subsystem. Besides the special
BPF helpers mentioned above, some helpers return the length
of a buffer or string, while others provide access to the
indirect members of the urb structure. For fields that are direct
members, no helper is needed since we can access them using
an offset from within the urb. We group these fields together
in a struct and expose it to the user space, as listed below:

struct __lbm_usb {
__u32 pipe;
__u32 stream_id;
__u32 status;
__u32 transfer_flags;
__u32 transfer_buffer_length;
__u32 actual_length;
__u32 setup_packet;
__u32 start_frame;
__u32 number_of_packets;
__u32 interval;
__u32 error_count; };

Instead of exposing urb to the user space and using the offset
from it, LBMTOOL only needs to know __lbm_usb and use
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• HCI/L2CAP
• 30/28 protocol fields
• 29/27 BPF helpers
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Figure 5: LBM hooks inside the Bluetooth subsystem.

offsets against it to directly access these fields. LBM takes
care of translating struct member access within __lbm_usb
to one within the kernel urb.

To help the BPF verifier understand the security constraints
of LBM and the scope of the USB subsystem, we implement
three callbacks within struct bpf_verifier_ops used
by the verifier. We first explicitly enumerate all legal BPF
helpers for the verifier, including all the 31 LBM USB BPF
helpers mentioned above as well as other common BPF map
helpers. We exclude any existing BPF helpers designed for
the networking subsystem. Therefore, the verifier would reject
any LBM USB eBPF program that uses BPF helpers beyond
the ones specified. We then validate every member access
of __lbm_usb within the range, and forbid any memory
write operations. Finally, we rewrite the instructions accessing
__lbm_usb and map them into corresponding urb accesses.

LBM Bluetooth: The implementation for Bluetooth follows
the same procedure as for USB. We place hooks into the
Host Control Interface (HCI) layer of the Bluetooth subsystem,
as HCI talks to the Bluetooth hardware directly. While HCI
provides the lowest-level of packet abstraction for the upper
layers, it is not easy for normal users to interact with this
layer since it lacks support for high-level protocol elements
which are better known to Bluetooth users, such as connec-
tions and device addresses. To alleviate this semantic gap,
we add another set of hooks into the Logical Link Control
and Adaptation Protocol (L2CAP) layer right above HCI,
as shown in Figure 5. These hooks are effectively calls to
lbm_filter_pkt, as demonstrated below:

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH,
LBM_DIR_TX, (void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH,
LBM_DIR_RX, (void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH_L2CAP,
LBM_DIR_TX, (void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH_L2CAP,
LBM_DIR_RX, (void *)skb);

The Bluetooth packet is encapsulated in a socket buffer, or
skb in Kernel parlance, for both the HCI and the L2CAP
layers. During our development, we encountered two chal-
lenges while hooking the TX path of L2CAP. Unlike the RX
path, the L2CAP layer does not provide a single function to
send out L2CAP packets. Even worse, because of different
Maximum Transmission Unit (MTU) sizes between HCI and
L2CAP, an L2CAP packet is usually fragmented during packet
construction before being sent to the lower layer. One so-
lution would be to place LBM hooks inside every function
on the TX path and reassemble the packet there. Besides
the code duplication, the major fault in this solution is the
maintenance burden of adding hooks to new TX functions.
To solve these challenges, we deploy only one LBM hook at
the Asynchronous Connection-Less (ACL) layer within HCI,
reassemble the original L2CAP packet there, all while fully
covering all TX cases used by the L2CAP layer, The hook
placement relative to the Bluetooth stack is shown in Figure 5.
Note that the RX path still has the LBM hook inside the
L2CAP layer, as the kernel has taken care of the packet
reassembly already.

As shown in Table III, we expose 30 and 28 protocol fields
from HCI and L2CAP layers, respectively. Note that both
layers share the same 12 fields related with connections. For a
HCI packet, a BPF helper is provided to check if a connection
is established (indicated by the availability of these fields). For
L2CAP, a connection is always established. We also implement
29 and 27 BPF helpers, which help retrieve the value of
exposed fields. As with the USB subsystem, we enumerate all
the legal BPF helpers that can be called within the Bluetooth
subsystem, and restrict the memory write operations in the
verifier.

B. LBM User Space
LBMTOOL is responsible for compiling LBM rules to eBPF

programs and loading them into the kernel. Programs pass
through standard compilation stages before ending up in the
kernel as compiled eBPF. To begin, we tokenize and parse the
input LBM program. To simplify these initial steps we use
Lark, a dependency-free Python library that supports LALR(1)
grammars written in EBNF syntax. Lark processes our LBM
rule grammar and creates a working standalone parser. Once
programs are lexed they parsed into a Concrete Syntax Tree
(CST), also known as a parse tree [4]. The raw parse tree is
then shaped and canonicalized via multiple steps to a friendlier
representation known as an Abstract Syntax Tree (AST). This
steps include symbol (e.g., usb.idProduct) resolution, type
checking, and expression flattening. After processing, the AST
more accurately represents the LBM language semantics and
is flattened into a low-level Intermediate Representation (IR)
for backend processing.

Our IR is modeled off of Three-Address Code (TAC) [4],
and it has a close mapping to the DSL semantics. Additionally,
we ensure that our IR conforms to Static Single Assignment
(SSA) form to simplify register allocation and any late IR
optimization passes. Once we have optimized our IR, it
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placement relative to the Bluetooth stack is shown in Figure 5.
Note that the RX path still has the LBM hook inside the
L2CAP layer, as the kernel has taken care of the packet
reassembly already.

As shown in Table III, we expose 30 and 28 protocol fields
from HCI and L2CAP layers, respectively. Note that both
layers share the same 12 fields related with connections. For a
HCI packet, a BPF helper is provided to check if a connection
is established (indicated by the availability of these fields). For
L2CAP, a connection is always established. We also implement
29 and 27 BPF helpers, which help retrieve the value of
exposed fields. As with the USB subsystem, we enumerate all
the legal BPF helpers that can be called within the Bluetooth
subsystem, and restrict the memory write operations in the
verifier.

B. LBM User Space
LBMTOOL is responsible for compiling LBM rules to eBPF

programs and loading them into the kernel. Programs pass
through standard compilation stages before ending up in the
kernel as compiled eBPF. To begin, we tokenize and parse the
input LBM program. To simplify these initial steps we use
Lark, a dependency-free Python library that supports LALR(1)
grammars written in EBNF syntax. Lark processes our LBM
rule grammar and creates a working standalone parser. Once
programs are lexed they parsed into a Concrete Syntax Tree
(CST), also known as a parse tree [4]. The raw parse tree is
then shaped and canonicalized via multiple steps to a friendlier
representation known as an Abstract Syntax Tree (AST). This
steps include symbol (e.g., usb.idProduct) resolution, type
checking, and expression flattening. After processing, the AST
more accurately represents the LBM language semantics and
is flattened into a low-level Intermediate Representation (IR)
for backend processing.

Our IR is modeled off of Three-Address Code (TAC) [4],
and it has a close mapping to the DSL semantics. Additionally,
we ensure that our IR conforms to Static Single Assignment
(SSA) form to simplify register allocation and any late IR
optimization passes. Once we have optimized our IR, it
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LBM: Protocol Stack Protectionmoves to the eBPF code generator. There we allocate registers
and translate each IR instruction to the corresponding eBPF
instructions. Our register allocator maps an infinite number
of virtual registers from our SSA IR to a fixed number of
eBPF physical registers. To do this, it builds an interference
graph [20] of the IR statements in the program. This graph
encodes the lifetime of each virtual register throughout the
program and aids in quickly selecting appropriate physical
registers during the allocation process. With registers allo-
cated, each IR statement is processed in order by the eBPF
code generation backend to emit assembly instructions. With
machine code emitted, any remaining control transfer labels
are resolved by a final two-pass assembly step. The resulting
eBPF code is packaged into a LBM object file with metadata
for loading into the kernel. For an example of the compiler’s
output at each stage, visit Appendix B.

V. EVALUATION

We first demonstrate that how users can write simple LBM
rules to protect protocol stacks and defend against known
attacks, covering both USB and Bluetooth. We then show how
to extend LBM to support NFC and provide a PoC implemen-
tation. Benchmark sections include our testing setup, micro-
benchmark (providing LBM overhead per packet), macro-
benchmark (providing LBM overhead from application- and
system- wise), and scalability (covering 100 LBM rules and
comparing LBM with other solutions).

A. Case Studies
Kernel Protocol Stack Protection: To protect the USB
protocol stack within the kernel like USBFirewall does, we
extract the constraints from the USB specification and rewrite
them using LBMTOOL. For example, to ensure the response
of a Get_Descriptor request is well-formed during the
enumeration phase, we write:

((usb.setup_packet != 0) && /* For enumeration */
(usb.request[0] == 0x80) && /* Get_Descriptor */
(usb.request[1] == 0x06) &&
/* Make sure response contains at least 2 bytes

*/
((usb.actual_length < 2) ||
/* Make sure the descriptor type matches */
((usb.request[3] != usb.data[1]) ||
/* Device descriptor */
((usb.request[3] == 1) && ((usb.data[0] != 18)

|| (usb.actual_length != 18))) ||
/* Configuration descriptor */
((usb.request[3] == 2) && ((usb.data[0] < 9)

|| (usb.actual_length < 9))) ||
/* String descriptor */
((usb.request[4] == 3) && ((usb.data[0] < 4)

|| (usb.actual_length < 4))))))

We first make sure the response has at least 2 bytes, for extract-
ing the length (usb.data[0]) and type (usb.data[1]) of
the response. We reject the packet if there is a type mismatch
between request and response. Depending on the type, we
then make sure the response has the minimum length required
by the specification. To fully cover all the responses during
USB enumeration, we also check the response returned by
Get_Status in a similar fashion.

To protect the Bluetooth stack within the kernel, we extract
the constraints from the Bluetooth specification and rewrite
them using LBMTOOL as follows:

/* HCI-CMD */
((bt.hci.type == 1) && (bt.hci.len < 3)) ||
/* HCI-ACL */
((bt.hci.type == 2) && (bt.hci.len < 4)) ||
/* HCI-SCO */
((bt.hci.type == 3) && (bt.hci.len < 3)) ||
/* HCI-EVT */
((bt.hci.type == 4) && (bt.hci.len < 2)))

This rule provides basic protection for the HCI layer.
Depending on the packet type, we make sure the response
has the minimum length required by the specification. We
also implemented basic protection for the L2CAP layer.

Preventing Data Leakage: In addition to propagating mal-
ware, USB storage devices are also used to steal sensitive
information from a computer. To tackle this threat, usbfilter
implemented a plugin to drop the SCSI write command on
the TX path, thus preventing any data from being written into
a connected USB storage device; this plugin mechanism is
referred to as Linux Usbfilter Module (LUM).

Recall LBM is designed to support the features of existing
solutions, including usbfilter’s LUM, for sake of generality.
We were able to port the SCSI-write-drop LUM to LBM with
only around 10 lines of code changes (primarily adjusting
naming of callbacks and header files). In fact, any LUM can
be ported to LBM with similarly minimal changes.

Trusted Input Devices: One of the most common BadUSB
attacks is the human interface device (HID)-based attack,
where a malicious USB device behaves like a keyboard and
injects keystrokes into the host machine. With LBM, we
can write a rule specifying a trusted input device, such that
keystrokes from all other input devices are dropped, as follows:

((usb.pipe == 1) && /* INT (Keystroke) */
((usb.manufacturer != "X") ||
(usb.product != "Y") ||
(usb.serial != "Z") ||
(usb.plugtime != 12345)))

For all keystrokes, we check against the expected
manufacturer, product, and serial number of the trusted input
device. This rules out any devices from different vendors or
different device models. In case the malicious device is able
to spoof its identity, we also include the plugging timestamp
of the device as part of the rule matching. Therefore, even
if the malicious device were able to mimic the identity of
the trusted input device, the malicious keystroke would be
dropped because the plugging timestamp would differ.

Securing USB Charging: A well-known defense against
BadUSB attacks by USB chargers is the USB condom [66],
which physically disconnects the USB data pins (D+/-) in the
connection. Unfortunately, this prevents phones that support
USB Battery Charging [55] from drawing extra power via the
data wires, except the one provided by VBus. As a result,
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LBM: Filter DSL

APPENDIX

A. Frontend Grammar

hexpri ::= hlogical-ori

hlogical-ori ::= hlogical-andi (‘||’ hlogical-andi)*

hlogical-andi ::= hcomparisoni (‘&&’ hcomparisoni)*

hcomparisoni ::= hatomi (hcomparison-opi hatomi)*

hcomparison-opi ::= ‘<’ | ‘>’ | ‘<=’ | ‘>=’ | ‘==’ | ’!=’

haccessi ::= ‘[’ hnumberi ‘:’ hnumberi ‘]’

hattributei ::= ‘.’ hIDENTIFIERi

hstructi ::= hIDENTIFIERi hattributei* haccessi?

hnumberi ::= hDEC_NUMBERi | hHEX_NUMBERi

hstringi ::= hSTRINGi

hatomi ::= hnumberi | ‘-’ hnumberi
| hstructi
| hstringi
| ‘(’ hexpri ‘)’

hDEC_NUMBERi ::= hDIGITi+

hHEX_NUMBERi ::= ‘0x’ hHEXDIGITi+

hLETTERi ::= ‘a’ ... ‘z’ | ‘A’ ... ‘Z’

hSTRINGi ::= ‘"’ (‘\"’ | /[^‘"’]/)* ‘"’

hDIGITi ::= ‘0’...‘9’

hHEXDIGITi ::= ‘a’ ... ‘f’ | ‘A’ ... ‘F’ | hDIGITi

hIDENTIFIERi ::= (‘_’ | hLETTERi) ( ‘_’ | hLETTERi | hDIGITi)*

Figure 10: The Extended Backus-Naur Form (EBNF) of our
constructed LBM expression grammar.

B. Compiler Example

LBM Program
usb.idVendor == 0x413c && usb.idProduct == 0x3010

Intermediate Representation
0: t1 := call(lbm_usb_get_idVendor)
1: t0 := binop(EQ, t1, 16700)
2: t3 := call(lbm_usb_get_idProduct)
3: t2 := binop(EQ, t3, 12304)
4: t4 := binop(AND, t0, t2)

eBPF Assembly
LSTART:

MOV64_REG(REG_9, REG_1)
MOV64_REG(REG_1, REG_9)
CALL_FUNC(FUNC_lbm_usb_get_idVendor)
MOV64_REG(REG_1, REG_0)
MOV64_IMM(REG_6, 1)
JMP_IMM(JEQ, REG_1, 16700, L1_)
MOV64_IMM(REG_6, 0)

L1_:
MOV64_REG(REG_1, REG_9)
CALL_FUNC(FUNC_lbm_usb_get_idProduct)
MOV64_REG(REG_2, REG_0)
MOV64_IMM(REG_3, 1)
JMP_IMM(JEQ, REG_2, 12304, L2_)
MOV64_IMM(REG_3, 0)

L2_:
JMP_IMM(JEQ, REG_6, 0, L3_)
JMP_IMM(JEQ, REG_3, 0, L3_)
MOV64_IMM(REG_4, 1)
JMP_A(L4_)

L3_: MOV64_IMM(REG_4, 0)
L4_:

JMP_IMM(JNE, REG_4, 0, L5_)
L6_: MOV64_IMM(REG_0, 0)

EXIT_INSN()
L5_: MOV64_IMM(REG_0, 1)
LEND: EXIT_INSN()

Figure 11: The compilation stages of an LBM expression.

C. lmbench
Table VII presents the complete summary of lmbench

results from Section V-D We use lmbench to benchmark
the whole system across different kernel configurations and
demonstrate that LBM does indeed introduce minimal over-
head across the whole system.

15

APPENDIX

A. Frontend Grammar

hexpri ::= hlogical-ori

hlogical-ori ::= hlogical-andi (‘||’ hlogical-andi)*

hlogical-andi ::= hcomparisoni (‘&&’ hcomparisoni)*

hcomparisoni ::= hatomi (hcomparison-opi hatomi)*

hcomparison-opi ::= ‘<’ | ‘>’ | ‘<=’ | ‘>=’ | ‘==’ | ’!=’

haccessi ::= ‘[’ hnumberi ‘:’ hnumberi ‘]’

hattributei ::= ‘.’ hIDENTIFIERi

hstructi ::= hIDENTIFIERi hattributei* haccessi?

hnumberi ::= hDEC_NUMBERi | hHEX_NUMBERi

hstringi ::= hSTRINGi

hatomi ::= hnumberi | ‘-’ hnumberi
| hstructi
| hstringi
| ‘(’ hexpri ‘)’

hDEC_NUMBERi ::= hDIGITi+

hHEX_NUMBERi ::= ‘0x’ hHEXDIGITi+

hLETTERi ::= ‘a’ ... ‘z’ | ‘A’ ... ‘Z’

hSTRINGi ::= ‘"’ (‘\"’ | /[^‘"’]/)* ‘"’

hDIGITi ::= ‘0’...‘9’

hHEXDIGITi ::= ‘a’ ... ‘f’ | ‘A’ ... ‘F’ | hDIGITi

hIDENTIFIERi ::= (‘_’ | hLETTERi) ( ‘_’ | hLETTERi | hDIGITi)*

Figure 10: The Extended Backus-Naur Form (EBNF) of our
constructed LBM expression grammar.

B. Compiler Example

LBM Program
usb.idVendor == 0x413c && usb.idProduct == 0x3010

Intermediate Representation
0: t1 := call(lbm_usb_get_idVendor)
1: t0 := binop(EQ, t1, 16700)
2: t3 := call(lbm_usb_get_idProduct)
3: t2 := binop(EQ, t3, 12304)
4: t4 := binop(AND, t0, t2)

eBPF Assembly
LSTART:

MOV64_REG(REG_9, REG_1)
MOV64_REG(REG_1, REG_9)
CALL_FUNC(FUNC_lbm_usb_get_idVendor)
MOV64_REG(REG_1, REG_0)
MOV64_IMM(REG_6, 1)
JMP_IMM(JEQ, REG_1, 16700, L1_)
MOV64_IMM(REG_6, 0)

L1_:
MOV64_REG(REG_1, REG_9)
CALL_FUNC(FUNC_lbm_usb_get_idProduct)
MOV64_REG(REG_2, REG_0)
MOV64_IMM(REG_3, 1)
JMP_IMM(JEQ, REG_2, 12304, L2_)
MOV64_IMM(REG_3, 0)

L2_:
JMP_IMM(JEQ, REG_6, 0, L3_)
JMP_IMM(JEQ, REG_3, 0, L3_)
MOV64_IMM(REG_4, 1)
JMP_A(L4_)

L3_: MOV64_IMM(REG_4, 0)
L4_:

JMP_IMM(JNE, REG_4, 0, L5_)
L6_: MOV64_IMM(REG_0, 0)

EXIT_INSN()
L5_: MOV64_IMM(REG_0, 1)
LEND: EXIT_INSN()

Figure 11: The compilation stages of an LBM expression.

C. lmbench
Table VII presents the complete summary of lmbench

results from Section V-D We use lmbench to benchmark
the whole system across different kernel configurations and
demonstrate that LBM does indeed introduce minimal over-
head across the whole system.

15

usb.idVendor == 0x413c && 
usb.idProduct == 0x3010



Florida Institute of Cyber Security (FICS) Research  30

• 64-bit BPF architecture
• BPF helpers
• BPF maps
• BPF verifier
• BPF JIT

LBM: Extended BPF (eBPF)

https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/
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• No Authorization!
• Devices are trusted by default
• Devices can request any functionality

What Went Wrong?

• No Integrity!
• Device firmware can be hacked
• Firmware modifications are invisible to host

• No Authentication!
• Devices have no trustworthy notion of identity
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#1: Peripheral Diversity
Q: How do we support all peripherals??

• USBFILTER (USENIX Security’16)

• Bluetooth-FW, NFC-FW, X-FW?

A: Peripheral Agnostic -
• Separation between mechanism and 

implementation - hooks
• Separation between mechanism and policy - 

generic packet filter
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#2: Hook Placement

Host Controller Interface (HCI)
Bluetooth Module

L2CAP

R
F
C
O
M

B
N
E
P

S
D
P

A
V
D
T
P

A
V
C
T
P

A
T
T

S
M
P

T
C
S

Profiles
Applications

.. ..

Q: Where to place hooks??

• High layer?

• Low layer?

• In between?

A:  Reference Monitor Concept -
• Complete mediation
• Tamperproof / Verifiability
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#3: Generic Packet Filter
• Berkeley Packet Filter (BPF)
• High-performance (IP) packet filtering
• In-kernel virtual machine (RISC)
• Just-In-Time (JIT) compilation
• Backend of tcpdump

Q: What is generic packet filter??

A: BPF for peripherals!
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#4: Programmability vs. Usability
Q: Who writes filtering rules?? 

• End users?

• Sysadmins?

• Developers?

A:  Everyone! -
• Users not enemy (Doh!)
• Peripheral agnostic (Again!)

iptables -A INPUT -s 15.15.15.51 -j DROP
iptables -A OUTPUT -p tcp --sport 22 -m  
conntrack --ctstate ESTABLISHED -j ACCEPT

    ldh    [12]                 
    jeq    #ETHERTYPE_IP, l1, l2 
    l1:    ret    #TRUE          
    l2:    ret    #0             

#include	<linux/bpf.h>	
#ifndef	__section	
#	define	__section(NAME)																		\	
			__attribute__((section(NAME),	used))	
#endif	
static	int	foo(void)	
{	
				return	XDP_DROP;	
}	
__section("prog")	
int	xdp_drop(struct	xdp_md	*ctx)	
{	
				return	foo();	
}	
char	__license[]	__section("license")	=	"GPL";
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BadUSB Attacks

Keystrokes

Data

Keystrokes
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BadUSB Attacks

USB_pkt(Keystrokes)

USB_pkt(Data)

USB_pkt(Keystrokes)



Florida Institute of Cyber Security (FICS) Research  38

BlueBorne Attacks
        switch (result) {
4165        case L2CAP_CONF_SUCCESS:
4166                l2cap_conf_rfc_get(chan, rsp->data, len);
4167                clear_bit(CONF_REM_CONF_PEND, &chan->conf_state);
4168                break;
4169
4170        case L2CAP_CONF_PENDING:
4171                set_bit(CONF_REM_CONF_PEND, &chan->conf_state);
4172
4173                if (test_bit(CONF_LOC_CONF_PEND, &chan->conf_state)) {
4174                        char buf[64];
4175
4176                        len = l2cap_parse_conf_rsp(chan, rsp->data, len,
4177                                                   buf, &result);
4178                        if (len < 0) {
4179                                l2cap_send_disconn_req(chan, ECONNRESET);
4180                                goto done;
4181                        }

            
                                                                

                                                                           buf 
length 

(64) is NOT 
passed 
here!

https://lxr.missinglinkelectronics.com/linux+v4.10/+code=result
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4165
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=L2CAP_CONF_SUCCESS
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4166
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=l2cap_conf_rfc_get
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=chan
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=rsp
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=data
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=len
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4167
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=clear_bit
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=CONF_REM_CONF_PEND
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=chan
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=conf_state
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4168
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4169
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4170
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=L2CAP_CONF_PENDING
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4171
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=set_bit
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=CONF_REM_CONF_PEND
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=chan
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=conf_state
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4172
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4173
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=test_bit
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=CONF_LOC_CONF_PEND
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=chan
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=conf_state
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4174
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=buf
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4175
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4176
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=len
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=l2cap_parse_conf_rsp
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=chan
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=rsp
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=data
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=len
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4177
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=buf
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=result
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4178
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=len
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4179
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=l2cap_send_disconn_req
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=chan
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=ECONNRESET
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4180
https://lxr.missinglinkelectronics.com/linux+v4.10/+code=done
https://lxr.missinglinkelectronics.com/linux+v4.10/net/bluetooth/l2cap_core.c#L4181

