Threshold ECDSA from ECDSA assumptions: the multiparty case

Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat

j@ckdoerner.net

ykondi@ccs.neu.edu

eysa@ccs.neu.edu

abhi@neu.edu

Northeastern University

Traditional Signature

Threshold Signature

Full Threshold

• Scheme can be instantiated with any t <= n

Adversary corrupts up to t-1 parties

ECDSA

- Elliptic Curve Digital Signature Algorithm
- Devised by David Kravitz, standardized by NIST
- Widespread adoption across the internet

Notation

Elliptic curve parameters G

Secret values sk

Public values pk R

ECDSA Recap

Non-linearity makes 'thresholdization' difficult

Threshold ECDSA

- Limited schemes based on Paillier encryption: [MacKenzie Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]
- Practical key generation and efficient signing (full threshold):
 - [Gennaro Goldfeder 18]: Paillier-based
 - [Lindell Nof Ranellucci 18]: El-Gamal based
- Our work last year [DKLs18]: 2-of-n ECDSA under native assumptions
- This work: Full-Threshold ECDSA under native assumptions

2-party multipliers: Oblivious Transfer in ECDSA curve

-Pros:

- With OT Extension (no extra assumptions) just a few milliseconds
- Native assumptions (CDH in the same curve)
- -Con: Higher bandwidth (100s of KB/party)

OT-MUL secure up to choice of inputs

- Light consistency check (unique to our protocol):
 - Verify shares in the exponent before reveal
 - Costs 5 exponentiations+curve points/party
 - Subverting checks implies solving CDH in the same curve

Tradeoffs

- Our work avoids expensive zero-knowledge proofs and assumptions foreign to ECDSA itself, required by other works in the area
- Using OT-MUL is very light on computation, but more demanding of bandwidth than alternative approaches; we argue this is not an issue for most applications
- Our wall clock times (even WAN) are an order of magnitude better than the next best concurrent work

Our Model

- Universal Composability [Canetti '01] (static adv., local RO)
- Functionality (trusted third party emulated by protocol):
 - -Store secret key
 - -Compute ECDSA signature when enough parties ask
- Assumption: CDH is hard in the ECDSA curve
- Network: Synchronous, broadcast
- Security with abort

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R=k\cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

Setup

- Fully distributed
- MUL setup: Pairwise among parties (128 OTs)
- Key generation: (Pedersen-style)
 - Every party Shamir-shares a random secret
 - -Secret key is sum of parties' contributions
 - Verify in the exponent that parties' shares are on the same polynomial

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R=k\cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

Obtaining Candidate Shares

- Building Block: Two party MUL with full security [DKLs18]
- One approach (implemented):
 - Each party starts with multiplicative shares of k and 1/k
 - Multiplicative to additive shares: log(t)+c rounds
- Alternative: [Bar-Ilan&Beaver '89] approach yields constant round protocol (work in progress)

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R=k\cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R=k\cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk]) => Standard GMW
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R=k\cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

Major challenges from 2 to Multi-party

2-party check does not obviously generalize [LNR18]

Can't use Diffie-Hellman Exchange for R

There are three relations that have to be verified

$$\begin{bmatrix} k \end{bmatrix}$$

$$\begin{bmatrix} k \end{bmatrix}$$

$$\begin{bmatrix} k \end{bmatrix}$$

$$\begin{bmatrix} k \end{bmatrix}$$

- **Technique**: Each equation is verified in the exponent, using 'auxiliary' information that's already available
- Cost: 5 exponentiations, 5 group elements per party independent of party count, and no ZK proofs

• Task: verify relationship between [k] and [1/k]

• Idea: verify $\left[\frac{1}{k}\right][k] = 1$ by verifying $\left[\frac{1}{k}\right][k] \cdot G = G$

Attempt at a solution:

Public

Broadcast

$$\Gamma_i = \begin{bmatrix} 1 \\ -k \end{bmatrix}_i \cdot R$$

Verify
$$\sum_{i \in [n]} \Gamma_i = G$$

Public

Adversary's contribution Attempt at a solution:

Honest Party's contribution

$$R = k_A k_h \cdot G$$

$$\Gamma_i = \begin{bmatrix} 1 & 1 \\ \frac{1}{k_A} & k_h \end{bmatrix}_i \cdot R$$

Verify
$$\sum_{i \in [n]} \Gamma_i = G$$

Attempt at a solution: Honest Party's contribution

Public

 $R = k_{\Delta}k_{b} \cdot G$

Adversary's contribution

$$\Gamma_i = \left[\left(\frac{1}{k_A} + \epsilon \right) \frac{1}{k_h} \right]_i \cdot R$$

Verify
$$\sum_{i \in [n]} \Gamma_i = G + \underbrace{\epsilon k_A \cdot G}_{\text{Easy for Adv. to offset}}$$

Idea: Randomize Target

- Currently we expect $\sum \Gamma_i$ to hit a fixed target G
- Idea: randomize the multiplication so target is unpredictable
- Compute $\left\lceil \frac{\phi}{k} \right\rceil$ instead of $\left\lceil \frac{1}{k} \right\rceil$
- Reveal ϕ only after *every* other value is committed

Public

Adversary's contribution Attempt at a solution:

Honest Party's contribution

$$R = k_A k_h \cdot G$$

$$\Gamma_i = \begin{bmatrix} 1 & 1 \\ \frac{1}{k_A} & \frac{1}{k_h} \end{bmatrix}_i \cdot R$$

Public

Adversary's contribution Attempt at a solution:

Honest Party's contribution

$$R = k_A k_h \cdot G$$

$$\Gamma_i = \left[\frac{\phi_A}{k_A} \frac{\phi_h}{k_h}\right]_i \cdot R$$

Verify
$$\sum_{i \in [n]} \Gamma_i = \phi_A \phi_h \cdot G$$

Public

Adversary's contribution Attempt at a solution:

Honest Party's contribution

$$R = k_A k_h \cdot G$$

$$\Gamma_i = \begin{bmatrix} \frac{\phi_A}{k_A} \frac{\phi_h}{k_h} \\ \frac{k_A}{k_h} \end{bmatrix}_i \cdot R$$

Verify
$$\sum_{i \in [n]} \Gamma_i = \Phi$$

Check in Exponent

Public

Adversary's contribution Attempt at a solution:

| Honest Party's contribution

$$R = k_A k_h \cdot G$$

Broadcast

$$\Gamma_{i} = \left[\left(\frac{\phi_{A}}{k_{A}} + \epsilon \right) \frac{\phi_{h}}{k_{h}} \right]_{i} \cdot R$$

Verify
$$\sum_{i \in [n]} \Gamma_i = \Phi + \epsilon \phi_h k_A \cdot G$$

$$i \in [n]$$
 Completely unpredictable

Check in Exponent

There are **three** relations that have to be verified

Each costs, per party:

-2 exponentiations

-2 field elements

Two broadcast rounds

Our Approach

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R=k\cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

Broadcast linear combination of shares

Dominant Costs

	Rounds	Public Key	Bandwidth
Setup	5	520 <i>n</i>	21 <i>n</i> KB
Signing	log(t)+6	5	<100 <i>t</i> KB

Journal version (in progress): 8 round signing

(à la [Bar-llan Beaver 89])

Benchmarks

- Implementation in Rust
- Ran benchmarks on Google Cloud
- One node per party
- LAN and WAN tests (up to 16 zones)
- Low Power Friendliness: Raspberry Pi (~93ms for 3-of-3)

LAN Setup

Broadcast PoK (DLog), Pairwise: 128 OTs

LAN Setup

Broadcast PoK (DLog), Pairwise: 128 OTs

LAN Setup

Broadcast PoK (DLog), Pairwise: 128 OTs

LAN Signing

LAN Signing

LAN Signing

WAN Nodes

WAN Benchmarks

All time values in milliseconds

Parties/Zones	Signing Rounds	Signing Time	Setup Time
5/1	9	13.6	67.9
5/5	9	288	328
16/1	10	26.3	181
16/16	10	3045	1676
40/1	12	60.8	539
40/5	12	592	743
128/1	13	193.2	2300
128/16	13	4118	3424

WAN Benchmarks

All time values in milliseconds

Parties/Zones	Signing Rounds	Signing Time	Setup Time
5/1	9	13.6	67.9
5/5	9	288	328
16/1	10	26.3	181
16/16	10	3045	1676
40/1	12	60.8	539
40/5	12	592	743
128/1	13	193.2	2300
128/16	13	4118	3424

WAN Benchmarks

All time values in milliseconds

Parties/Zones	Signing Rounds	Signing Time	Setup Time
5/1	9	13.6	67.9
5/5	9	288	328
16/1	10	26.3	181
16/16	10	3045	1676
40/1	12	60.8	539
40/5	12	592	743
128/1	13	193.2	2300
128/16	13	4118	3424

Comparison

All time figures in milliseconds

	Signing		Setup	
Protocol	t = 2	t = 20	n = 2	n = 20
This Work	9.5	31.6	45.6	232
GG18	77	509	_	
LNR18	304	5194	~ 11000	~ 28000

Note: Our figures are wall-clock times; includes network costs

Comparison

All time figures in milliseconds

	Signing		Signing Setup	
Protocol	t = 2	t = 20	n=2	n = 20
This Work	9.5	31.6	45.6	232
GG 18	77	509	_	_
LNR18	304	5194	~ 11000	~ 28000

Note: Our figures are wall-clock times; includes network costs

Is communication the bottleneck?

- Mobile applications (human-initiated):
 - eg. t=4, <4Mb transmitted per party
 - Well within LTE envelope for responsivity

Is communication the bottleneck?

- Large-scale automated distributed signing:
 - Threshold 2: 3.8ms/sig <= ~263 sig/second
 - Threshold 20: 31.6ms/sig <= ~31 sig/second
- Both settings need <500Mb bandwidth

Conclusion

- Efficient full-threshold ECDSA with fully distributed keygen
- Paradigm: 'produce candidate shares, verify by exponent check' costs 5 exponentiations (+ many hashes) to sign, no ZK online
- Instantiation: Cryptographic assumptions native to ECDSA itself (CDH in the same curve)
- Lightweight computation but communication well within practical range (<100t KB/party)
- Wall-clock times: Practical in realistic scenarios

Thank you!

eprint.iacr.org/2019/523