Threshold ECDSA

from ECDSA assumptions:
the multiparty case

Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat

j@ckdoerner.ne t ykondi@ccs.neu.edu eysa@ccs.neu.edu abhi@neu.edu

Northeastern University

Traditional Signature

Threshold Signature

{SkA» skB, skc} < Share(sk) INDISTINGUISHABLE

3-of-n Signature Scheme
o, /{@
O @ D,

sk~

\\

3-of-n Sighature Scheme

k

sk, % §_\k @
. @ O’

sk~

3-of-n Sighature Scheme

sk

/\~

- \Sk R
@ U

sk~

3-of-n Sighature Scheme

sk

@ = @& "
___ Pk
© 2 6

skB\ %) /iSkD

\\%;/

3-of-n Sighature Scheme

3-of-n Sighature Scheme

oy %)

Full Threshold

 Scheme can be instantiated with any t <= n

* Adversary corrupts up to t-1 parties

ECDSA

e Elliptic Curve Digital Signature Algorithm
e Devised by David Kravitz, standardized by NIST

e \Widespread adoption across the internet

€« ¢

e

Notation

Elliptic curve parameters G q
Secretvalues sk &

Public values pk R

ECDSA Recap

x-coordinate of R

R=k-G J
sign(m, sk, k) = H(m)+sk - r,

Non-linearity makes ‘thresholdization’ difficult

Threshold ECDSA

e | imited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

* Practical key generation and efficient signing (full threshold):

- [Gennaro Goldfeder 18]: Paillier-based
- [Lindell Nof Ranellucci 18]: El-Gamal based

* Our work last year [DKLs18]: 2-of-n ECDSA under native
assumptions

* This work: Full-Threshold ECDSA under native assumptions

Our Approach

o 2-party multipliers: Oblivious Transfer in ECDSA curve
- Pros:

- With OT Extension (no extra assumptions) just a
few milliseconds

- Native assumptions (CDH in the same curve)

- Con: Higher bandwidth (100s of KB/party)

Our Approach

e OT-MUL secure up to choice of inputs

e Light consistency check (unique to our protocol):
- \Verity shares in the exponent before reveal
- Costs 5 exponentiations+curve points/party

- Subverting checks implies solving CDH in the same
curve

Tradeoffs

e Our work avoids expensive zero-knowledge proofs and
assumptions foreign to ECDSA itself, required by other
works In the area

e Using OT-MUL is very light on computation, but more
demanding of bandwidth than alternative approaches;
we argue this is not an issue for most applications

e Our wall clock times (even WAN) are an order of
magnitude better than the next best concurrent work

Our Model

* Universal Composability [Canetti '01] (static adv., local RO)

e Functionality (trusted third party emulated by protocol):
-Store secret key
-Compute ECDSA signature when enough parties ask

e Assumption: CDH is hard in the ECDSA curve

* Network: Synchronous, broadcast

e Security with abort

Our Approach

e Setup: MUL setup, VSS for [sk]

Setup

* Fully distributed
* MUL setup: Pairwise among parties (128 OTs)
 Key generation: (Pedersen-style)
- Every party Shamir-shares a random secret
- Secret key is sum of parties’ contributions

- Verify in the exponent that parties’ shares are on the same
polynomial

Our Approach

1. Get candidate shares [k], [1/k], and R=k-G

Obtaining Candidate Shares

e Building Block: Two party MUL with full security
IDKLs18]

 One approach (implemented):
- Each party starts with multiplicative shares of k and 71/k
- Multiplicative to additive shares: log(t)+c rounds

e Alternative: [Bar-llan&Beaver 89| approach yields
constant round protocol (work in progress)

Our Approach

2. Compute [sk/k] = MUL([7/k], [sk])

Our Approach

e Setup: MUL setup, VSS for [sk]
e Signing:
1. Get candidate shares [k], [1/k], and R=k-G
2. Compute [sk/k] = MUL([71/k], [sk]) => Standard GMW

3. Check relations in exponent

4. Reconstruct sig = [1/k]-H(m)+[sk/k]

Our Approach

3. Check relations in exponent

Major challenges from 2 to Multi-party

2-party check does not obviously generalize [LNR18]

Can’t use Diffie-Hellman Exchange for R

Check in Exponent

e There are three relations that have to be verified

SNoEn

Check in Exponent

. 1 sk
| K] . .

* Technique: Each equation is verified in the exponent,

using ‘auxiliary’ information that’s already available

e Cost: 5 exponentiations, 5 group elements per party

iIndependent of party count, and no ZK proofs

Check in Exponent

e Task: verify relationship between k] and [1/k]

. 1 1
e |[dea: verify ’;] [k] = 1 by verifying [Z] k] -G =G

Check in Exponent

Attempt at a solution:

Public R
1
Broadcast I, = 7| R

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution

v
Public R — kAkh . G
r=|——| &
Broadcast ;= o ko i
Verify Y I=G

1€ nj

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution

v
Public R = kAkh . G
[. + . R
A — — 6 e .
Broadcast j s K .
Verify) Ii=G+eky -G

1€[n] Easy for Adv. to offset

ldea: Randomize Target

Currently we expect Z . to hit a fixed target G

Idea: randomize the multiplication so target is unpredictable

¢\ 1
Compute |—| instead of |—
k k

Reveal ¢ only after every other value is committed

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v

Public R — kAk y G

1 1
N =|——| . R
Broadcast ; [kn kh]i

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
' v

Public R — kAkh ‘ G
Da Oy
L =-42] .R
Broadcast j tkA X i

Verify) Ti=¢ub,-G

1€[n]

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
' v

Public R — kAkh . G
Ps P,
Broadcast j tkA X i
Verify Z .=

Check in Exponent

Adversary's contribution
Attempt at a solution: l Honest Party's contribution

v
Public R — kAkh . G
Broadcast I, = (ﬁ+€ ﬁ - R
KA kn |
Verify Z [=®+edk, -G

i€[n] Completely unpredictable

Check in Exponent

There are three relations that have to be
verified

LS e L
PP s TN
o il N
' 0
4
- &
4
&

A
v

Each costs, per party:
-2 exponentiations
-2 field elements

Two broadcast rounds

Our Approach

e Setup: MUL setup, VSS for [sk]
* Signing:
1. Get candidate shares [k], [1/k], and R=k-G
2. Compute [sk/k] = MUL([7/k], [sk])
3. Check relations in exponent Broadcast linear

combination

4. Reconstruct sig = [1/k]-H(m)+[sk/k] of shares

Dominant Costs

Rounds Public Key | Bandwidth

Setup 5 520n 21n KB

Signing log(t)+6 5 <100t KB

Journal version (in progress): 8 round signing

(a la [Bar-llan Beaver 89])

Benchmarks

* Implementation in Rust
e Ran benchmarks on Google Cloud
e One node per party

e LAN and WAN tests (up to 16 zones)

* Low Power Friendliness: Raspberry P
(~93ms for 3-0f-3)

Execution Time (ms)

10000,

e
-
-
-

1000}

100}

LAN Setup

300/}

301

4 8 16 32 64
Number of Parties (n)

Broadcast PoK (DLog), Pairwise: 128 OTs

128

256

LAN Setup

10000 —

e
-
-
-

1000}

300/}

Execution Time (ms)

100}

30—

4 3 16 32 64

Number of Parties (n)
Broadcast PoK (DLog), Pairwise: 128 OTs

128

256

Execution Time (ms)

10000,

e
-
-
-

1000}

100}

LAN Setup

300

301

4 8 16 32 64
Number of Parties (n)

Broadcast PoK (DLog), Pairwise: 128 OTs

128

256

Execution Time (ms)

1000,

e
-
-

100}

LAN Signing

o
-

ek
-

4 8 16 32 64
Number of Parties (t)

128

256

Execution Time (ms)

1000,

e
-
-

100}

LAN Signing

o
-

ek
-

4 8 16 32 64
Number of Parties (t)

128

256

Execution Time (ms)

1000,

e
-
-

100}

LAN Signing

o
-

ek
-

4 8 16 32 64
Number of Parties (t)

128

256

WAN Nodes

7.1 ms
665m
235 ms

348 ms

WAN Benchmarks

All time values in milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

3/5 9 233 328

WAN Benchmarks

All time values in milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

16/16 10 3045 1676

WAN Benchmarks

All time values in milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

128/16 13 4118 3424

Comparison

All time figures Iin milliseconds

Signing
Protocol t = 2 t = 20
This Work 9.5 31.6
GG18 77 509

LNRIS 304 5194

Note: Our figures are wall-clock
times; includes network costs

Comparison

All time figures Iin milliseconds

Protocol

This Work
GG18
[LNRI18% ~11000 ~28000

Note: Our figures are wall-clock
times; includes network costs

ls communication the D

a
(o)

%tleneck’?

e Mobile applications (human-initiated):
- eg. t=4, <4Mb transmitted per party

- Well within LTE envelope for responsivity

|s communication the bottleneck?

.2 B

 Large-scale automated distributed signing:
- Threshold 2: 3.8ms/sig <= ~263 sig/second
- Threshold 20: 31.6ms/sig <= ~31 sig/second
 Both settings need <500Vib bandwidth

Conclusion

Efficient full-threshold ECDSA with fully distributed keygen

Paradigm: ‘produce candidate shares, verify by exponent check’
costs 5 exponentiations (+ many hashes) to sign, no ZK online

Instantiation: Cryptographic assumptions native to ECDSA itself
(CDH in the same curve)

Lightweight computation but communication well within
practical range (<100t KB/party)

Wall-clock times: Practical in realistic scenarios

Thank you!

eprint.iacr.org/2019/523

