RIDL

ROGUE IN-FLIGHT DATA LOAD

Stephan van Schaik - Alyssa Milburn

Sebastian Osterlund - Pietro Frigo - Giorgi Maisuradze*

Kaveh Razavi - Herbert Bos - Cristiano Guiffrida

UNIVERSITAT
DES
SAARLANDES

“VUSec)iz

What can we still do as an attacker?

Meet Rogue In-flight Data Load or RIDL
A new class of speculative execution attacks

that knows no boundaries

Privilege levels are just a social construct

SECURITY DOMAINS

CPU
Thread

Thread

We can leak between hardware threads!

7.1

SECURITY DOMAINS

Hypervisor
Enclave
Guest CPU
Kernel Kernel Enclave
User Space User Space Enclave

But can we leak across other security domains?

SECURITY DOMAINS

Hypervisor
Enclave
Guest CPU
Kernel Kernel Enclave
User Space User Space Enclave

Yes, we can!

SECURITY DOMAINS

Hypervisor
Enclave
Guest CPU
Kernel Kernel Enclave
User Space User Space Enclave

We leak from the kernel...

SECURITY DOMAINS

Hypervisor
Enclave
Guest Guest
Kernel Kernel Enclave
User Space User Space Enclave

... across VMs ...

SECURITY DOMAINS

Hypervisor
Enclave
Guest Guest
Kernel Kernel Enclave
User Space User Space Enclave

... from the hypervisor ...

SECURITY DOMAINS

Hypervisor
Enclave
Guest Guest
Kernel Kernel Enclave
User Space User Space Enclave

... and from SGX enclaves!

We leak across all security domains!

7.8

SECURITY DOMAINS

Can we leak in the web browser?

7.9

SECURITY DOMAINS

Yes, we can!

7.10

SECURITY DOMAINS

Yes, we can!

e We reproduced RIDL in Mozilla Firefox

7.10

SECURITY DOMAINS

Yes, we can!

e We reproduced RIDL in Mozilla Firefox

e = No need for special instructions

7.10

We leak across security domains, and in the browser!

7.11

Memory addresses are a social construct too

PREVIOUS ATTACKS

FORESHADOW

CVE-2018-3619
CVE-2018-3620
CVE-2018-3646

Previous attacks show we can speculatively leak from
addresses

9.1

PREVIOUS ATTACKS

-

FORESHADOW
CVE-2018-3615

CVE-2018-3620
CVE-2018-3646
Our mitigation efforts focus on isolating/masking

addresses

9.2

e Spectre: access out-of-bound addresses
e Meltdown: leak kernel data from virtual addresses

e Foreshadow: leak from physical address

10.1

e Spectre: mask array index to limit address range

e Meltdown: unmap kernel addresses from
userspace

e Foreshadow: invalidate physical address

10.2

Example

10.3

MELTDOWN

Address Space

Userspace

Kernel

Before

Problem: leak kernel data from virtual addresses

11

1

MELTDOWN

Address Space User Mode Kernel Mode
Userspace Userspace Userspace
Kernel Kernel

Before After

Solution: unmap kernel addresses

11.2

PREVIOUS ATTACKS

11.3

PREVIOUS ATTACKS

e Previous attacks exploit addressing

11.3

PREVIOUS ATTACKS

e Previous attacks exploit addressing

e Mitigation by isolating/masking addresses

11.3

RIDL

RIDL does not depend on addressing:

12

RIDL

RIDL does not depend on addressing:

e = Bypass all address-based security checks

12

RIDL

RIDL does not depend on addressing:

e = Bypass all address-based security checks

e = Makes RIDL hard to mitigate

12

What CPUs does RIDL affect?

13

We bought Intel and AMD CPUs from almost every
generation since 2008

14 .1

... and sent the invoices to Herbert

14.2

14.3

RIDL works on all mainstream Intel CPUs since 2008

15.1

15.2

Products Solutions Support

USA (English) @ Signin 8 Q

and Software Product Specificatio Warranty - Support Community Contact Support Support by Product -~

Support Home » Processors 3

Side-channel Vulnerability and Mitigation Methods

The security of our products is one of our most important priorities.

The threat environment continues to evolve. Intel is committed to investing in the security and reliability of our products, and to working to safeguard users’ E Q
sensitive information.

Specific to side-channel vulnerabilities, mitigations have been provided for all variants noted below through a combination of updates for: Documentation

® Firmware
® Operating systems gondlenllT?e - i
o Virtual Machine Manager* roduct Information & Documentation
System manufacturers have incorporated these updates. Some Intel products may contain hardware mitigations. See the table below for mitigation details: Article ID
000031501
Vul bility and Mitigation Method
Variant 1 Variant 2 Variant 3 Variant 3a R . Last Reviewed
. Variant 4 Variant 5 11/21/2018
(Bounds Check (Branch Target (Rogue Data Cache (Rogue System Register N
Processor Model L (Rogue System | (L1 Terminal
Bypass; also known | Injection; also known Load; also known as Read; also known as .
Register Read) Fault)
as Spectre) as Spectre) Meltdown) Meltdown)
0 ™
!ntel G 0S/VMM Firmware +0S Hardware Firmware Firmware +0S Hardware
i9-9900k
iR 0S/VMM Fi +0S Hard Fi Fi +0s Hard
i7-0700k 1’ Irmware ardware Irmware iIrmware ardware

16.1

e Firmware

e Operating systems

¢ Virtual Machine Manager*

System manufacturers have incorporated these updates. Some Intel products may contain hardware mitigations. See

the table below for mitigation details:

Vulnerability and Mitigation Method

Intel announces Coffee Lake Refresh

Variant 1 Variant 2 .] Variant)
Variant 3 Variant 3a Variant
(Bounds (Branch 4
(Rogue Data (Rogue System 5
Processor Check Target . (Rogue
.. Cache Load; Register Read; (L1
Model Bypass; also |Injection; also System .
also known as also known as . Terminal
known as known as Register
Meltdown) Meltdown) Fault)

Spectre) Spectre) Read)
Intel® Core™ Firmware
. OS/VMM Firmware +OS Hardware Firmware Hardware
19-9900k +0S
Intel® Core™) . Firmware

+
i7.9700k OS/VMM Firmware +OS Hardware Firmware +OS Hardware
Intel® Core™) . Firmware
+

i5.9600k OS/VMM Firmware +OS Hardware Firmware +OS Hardware
Intel® Core™ Firmware

16.2

e Firmware

e Operating systems

¢ Virtual Machine Manager*

System manufacturers have incorporated these updates. Some Intel products may contain hardware mitigations. See

the table below for mitigation details:

Vulnerability and Mitigation Method

Variant 1 Variant 2 .] Variant)
Variant 3 Variant 3a Variant
(Bounds (Branch 4
(Rogue Data (Rogue System 5
Processor Check Target . (Rogue
.. Cache Load; Register Read; (L1
Model Bypass; also |Injection; also System .
also known as also known as . Terminal
known as known as Register
Meltdown) Meltdown) Fault)

Spectre) Spectre) Read)
Intel® Core™ Firmware
. OS/VMM Firmware +OS Hardware Firmware Hardware
19-9900k +0S
Intel® Core™) . Firmware

+
i7.9700k OS/VMM Firmware +OS Hardware Firmware +OS Hardware
Intel® Core™) . Firmware
+

i5.9600k OS/VMM Firmware +OS Hardware Firmware +OS Hardware
Intel® Core™ Firmware

In-silicon mitigations against Meltdown and

Foreshadow

16.3

e Firmware

e Operating systems
¢ Virtual Machine Manager*

System manufacturers have incorporated these updates. Some Intel products may contain hardware mitigations. See

the table below for mitigation details:

Vulnerability and Mitigation Method

Let’s buy the Intel Core i9-9900K!

Variant 1 Variant 2 .] Variant)
Variant 3 Variant 3a Variant
(Bounds (Branch 4
(Rogue Data (Rogue System 5
Processor Check Target . (Rogue
.. Cache Load; Register Read; (L1
Model Bypass; also |Injection; also System .
also known as also known as . Terminal
known as known as Register
Meltdown) Meltdown) Fault)

Spectre) Spectre) Read)
Intel® Core™ Firmware
. OS/VMM Firmware +OS Hardware Firmware Hardware
19-9900k +0S
Intel® Core™) . Firmware

+
i7.9700k OS/VMM Firmware +OS Hardware Firmware +OS Hardware
Intel® Core™) . Firmware
+

i5.9600k OS/VMM Firmware +OS Hardware Firmware +OS Hardware
Intel® Core™ Firmware

16.4

... and send another invoice to Herbert

16.5

We got it the day after we submitted the paper

RIDL works regardless of these in-silicon mitigations

16.6

Xeon Silver 4110 (Skylake SP) - 2017
Core i7-8700K (Coffee Lake) - 2017
Core i7-7800X (Skylake X) - 2017
Core i7-7700K (Kaby Lake) - 2017
Core i7-6700K (Skylake) - 2015
Core i7-5775C (Broadwel) - 2015
Core i7-4790 (Haswell) - 2014

Core i7-3770K (Ivy Bridge) - 2012
Core i7-2600 (Sandy Bridge) - 2011
Core i3-550 (Westmere) - 2010
Core i7-920 (Nehalem) - 2008

16.7

AMD

We also tried to reproduce it on AMD

17.1

AMD

We also tried to reproduce it on AMD

RIDL does not affect AMD

17.2

Core i9-9900K (Coffee Lake R) - 2018
Xeon Silver 4110 (Skylake SP) - 2017
Core i7-8700K (Coffee Lake) - 2017
Core i7-7800X (Skylake X) - 2017
Core i7-7700K (Kaby Lake) - 2017
Core i7-6700K (Skylake) - 2015

Core i7-5775C (Broadwel) - 2015
Core i7-4790 (Haswell) - 2014

Core i7-3770K (Ivy Bridge) - 2012
Core i7-2600 (Sandy Bridge) - 2011
Core i3-550 (Westmere) - 2010

Core i7-920 (Nehalem) - 2008

17.3

Runs Great on Intel®

18

But where are we actually leaking from?

19

LEAKY SOURCES

e | - S L2 Cache
- - 256 kiB
™ w 4-way
n ||
— | L1d Cache Line Fill
95 | 2| 32kiB W Buffer
o 8-way (10 entries)

loads

stores

Load Buffer

(72 entries)

Store & Forward Buffer

(56 entries)

Physical

Register File

(180 entries)

Integer
Registers

Jowwod

__

__

| AGU
i |_LOAD

AGU

LOAD

' [INT ALU

. |_INT DIV

IVEC ALU

IVEC MUL

: [FP FMA

' [AES

VEC STR

FP DIV

od
od
od
od
od
od
od
od

—1 1= T

[>=1 =1 P=1 [I (=1 P

20.1

LEAKY SOURCES

e | - S L2 Cache i
3 — 256 kiB)
o | | @ 4-way X
n] 1 Execution Units
— | L1d Cache Line Fill '+ [STORE B
gs | | 32kiB W Buffer RN = =
— : ! '
w© 8-way (10 entries) ' ' [T LOAD N
AGU]
' [LOAD
I <
: ' [INT ALU T
loads Load Buffer Physical \ [INT DIV B
(72 entries) Register File : II\\//ECC: ﬁ/l'-llJJL N
)]
stores | Store & Forward Buffer Integer o FPAITEI\SA 1
: Registers 3 I\
(56 entries) _ 3 VEC STR T\
(180 entries) o] FP DIV T T T T T T T I

Previous attacks had it easy, they leak from caches

20.2

LEAKY SOURCES

e ol L2 Cache ¥
4 — 256 kiB)
™ ® 4-way N
=] o Execution Units
— | L1d Cache Line Fill '+ [STORE B
e | 2| 32kiB W Buffer | —aeD =
— . i 1
w 8-way (10 entries) ' ' LOAD N
AGU]
+ [LOAD
I <
_ ' [INT ALU T
loads Load Buffer Physical ; | INT DIV N
(72 entries) Register File : II\\//ECC: ﬁ/l'-llJJL N
I]
stores | Store & Forward Buffer Integer o FPAITEI\SA 1
56 i Registers 3 I\
(56 entries) ' 3 [VECSTR I\
(180 entries) o] FP DIV T T T T T T T I

Caches are well documented and well understood.

20.3

LEAKY SOURCES

e | - S L2 Cache
- - 256 kiB
™ w 4-way
n ||
— | L1d Cache Line Fill
95 | 2| 32kiB W Buffer
o 8-way (10 entries)

loads

stores

Load Buffer

(72 entries)

Physical
Register File

(56 entries)

Store & Forward Buffer

Integer
Registers

(180 entries)

Jowwod

__

__

| AGU
i |_LOAD

AGU

LOAD

' [INT ALU

. |_INT DIV

IVEC ALU

IVEC MUL

: [FP FMA

' [AES

VEC STR

FP DIV

©
o

©
o

©
o

©
o

©
o

But RIDL does not leak from caches!

o
o

©
o

o
o

—1 1= T

[>=1 =1 P=1 [I (=1 P

20.4

LEAKY SOURCES

e | - S L2 Cache
- - 256 kiB
™ w 4-way
n ||
— | L1d Cache Line Fill
95 | 2| 32kiB W Buffer
o 8-way (10 entries)

loads

stores

Load Buffer

(72 entries)

Store & Forward Buffer

(56 entries)

Physical

Register File

(180 entries)

Integer
Registers

Jowwod

__

__

| AGU
i |_LOAD

AGU

LOAD

' [INT ALU

. |_INT DIV

IVEC ALU

IVEC MUL

: [FP FMA

' [AES

VEC STR

FP DIV

©
o

©
o

©
o

©
o

©
o

But what else is there to leak from?

o
o

©
o

o
o

—1 1= T

[>=1 =1 P=1 [I (=1 P

20.5

LEAKY SOURCES

e | - S L2 Cache
3 - 256 kiB
™ w 4-way
n ||
— | L1d Cache Line Fill
95 | 2| 32kiB W Buffer
o 8-way (10 entries)

loads

stores

Load Buffer

(72 entries)

Store & Forward Buffer

(56 entries)

There are other internal CPU buffers

Physical

Register File

(180 entries)

Integer
Registers

Jowwod

__

__

| AGU
i |_LOAD

AGU

LOAD

' [INT ALU

. |_INT DIV

IVEC ALU

IVEC MUL

: [FP FMA

' [AES

VEC STR

FP DIV

©
o

©
o

©
o

©
o

©
o

o
o

©
o

o
o

—1 1= T

[>=1 =1 P=1 [I (=1 P

20.6

LEAKY SOURCES

e | - S L2 Cache
3 - 256 kiB
™ w 4-way
n ||
— | L1d Cache Line Fill
95 | 2| 32kiB W Buffer
o 8-way (10 entries)

Load Buffer
loads _
(72 entries)
Store & Forward Buffer
stores
(56 entries)

Physical
Register File

(180 entries)

Integer
Registers

Jowwod

__

__

| AGU
i |_LOAD

AGU

LOAD

' [INT ALU

. |_INT DIV

IVEC ALU

IVEC MUL

: [FP FMA

' [AES

VEC STR

FP DIV

©
o

©
o

©
o

©
o

©
o

o
o

©
o

o
o

Line Fill Buffers, Store Buffers and Load Ports

—1 1= T

[>=1 =1 P=1 [I (=1 P

20.7

LEAKY SOURCES

CPU CPU
Core Core
LLC Slice | | LLC Slice
LLC Slice | | LLC Slice
CPU CPU
Core Core

System Agent

Display
Controller

PCle

Memory
Controller

But there is more!

20.8

LEAKY SOURCES

CPU CPU
Core Core
LLC Slice | | LLC Slice
LLC Slice | | LLC Slice
CPU CPU
Core Core

System Agent

Display
Controller

PCle

Memory
Controller

Uncached Memory

20.9

We can leak from various internal CPU buffers!

20.10

RIDL is a class of speculative execution attacks

also known as Micro-architectural Data Sampling

20.11

Let’s focus on one particular instance:

Line Fill Buffers

21

1

MANUALS

MEM_LOAD_UOPS_RETIRED.HIT_LFB_PS - Counts demand loads that hit in the line fill buffer (LFB). A
LFB entry is allocated every time a miss occurs in the L1 DCache. When a load hits at this location it
means that a previous load, store or hardware prefetch has already missed in the L1 DCache and the
data fetch is in progress. Therefore the cost of a hit in the LFB varies. This event may count cache-line
split loads that miss in the L1 DCache but do not miss the LLC.

On 32-byte Intel AVX loads, all loads that miss in the L1 DCache show up as hits in the L1 DCache or hits
in the LFB. They never show hits on any other level of memory hierarchy. Most loads arise from the line
fill buffer (LFB) when Intel AVX loads miss in the L1 DCache.

e We first read the manuals
e Some references to internal CPU buffers
e But no further explanation

e Where would you even start?

21.2

That’s why we started reading patents instead!

22.1

We read a lot of patents, and survived!

22.2

So today | can tell you a bit more about them

23.1

But wait, what are these

Line Fill Buffers?

23.2

They were never mentioned during
my Computer Architecture courses

but maybe | didn’t pay attention

23.3

LINE FILL BUFFERS?

(3 Memory Pipeline I ¥ (2 Out-of-Order Engine
e |~ o L2 Cache ¥
4 — 256 kiB x
— — '
w £y 4-way ®
n o Execution Units
~ | L1d Cache Line Fill Lo C
gs Q i)
2> | i 32 kiB Buffer o 5
w 8-way (10 entries) '\ ' [LOAD B
__ AGU B
e B e .1 | _LOAD
' <
| . \ | INT ALU T
loads Load Buffer Physical \ [INT DIV B
‘ (72 entries) Register File | II\\//EEE ﬁALLLJJL N
:]
¢ Store & Forward Buffer Integer o FPAE'\S/IA 1
stores , Registers - I\
(56 entries) ' 3 1 [VEC STR T
(180 entries) 2 '| FPDIV T T T T BT TBTTB I [

Central buffer between execution units, L1d and L2 to
iImprove memory throughput

23.4

LINE FILL BUFFERS?

__

! (2 Out-of-Order Engine

e |~ o L2 Cache :
5 — 256 kiB :
(i —
@ w 4-way .
n : Execution Units
L1d Cache Line Fill] STORE [
gs | 32 kiB Buffer » -
8- 10 entri ¥ Ay |
way (10 entries) w LOAD B
AGU]
LOAD
g
| . INT ALU T
loads Load Buffer Physical INT DIV -
(72 entries) Register File IVECALU
IVEC MUL B
Store & Forward Buffer Integer 0 £P LAl B
stores) Registers ° AES T\
(56 entries) gistel g VEC STR T
enedlfle IPDV | 32323288883 I

Central buffer between execution units, L1d and L2 to
iImprove memory throughput

23.5

LINE FILL BUFFERS?

(3 Memory Pipeline I ¥ (2 Out-of-Order Engine
e |~ o L2 Cache ¥
- — 256 kiB o
— — '
w £y 4-way B
n o Execution Units
~ | L1d Cache Line Fill Lo C
gs o - R
2> | i 32 kiB Buffer Y e 5
w 8-way (10 entries) 1 ' [LOAD B
__ AGU B
B ! [_LOAD
' <
| : ' [INT ALU T
loads Load Buffer Physical \ [INT DIV B
‘ (72 entries) Register File E II\\//EEE ﬁALLLJJL N
!]
¢ Store & Forward Buffer Integer o FPAE'\S/IA 1
stores , Registers N I\
(56 entries) ' 3 1 [VEC STR T
(180 entries) 2 '| FPDIV T T T T B8BEBEE [

Central buffer between execution units, L1d and L2 to
iImprove memory throughput

23.6

LINE FILL BUFFERS?

(3 Memory Pipeline I ¥ (2 Out-of-Order Engine
e |~ o L2 Cache ¥
- — 256 kiB o
— — '
w £y 4-way B
n o Execution Units
~ | L1d Cache Line Fill Lo C
gs o - R
2> | i 32 kiB Buffer Y e 5
w 8-way (10 entries) 1 ' [LOAD B
__ AGU B
B ! [_LOAD
' <
| : ' [INT ALU T
loads Load Buffer Physical \ [INT DIV B
‘ (72 entries) Register File E II\\//EEE ﬁALLLJJL N
!]
¢ Store & Forward Buffer Integer o FPAE'\S/IA 1
stores , Registers N I\
(56 entries) ' 3 1 [VEC STR T
(180 entries) 2 '| FPDIV T T T T B8BEBEE [

Central buffer between execution units, L1d and L2 to
iImprove memory throughput

23.7

LINE FILL BUFFERS?

Multiple roles:

e Asynchronous memory requests
e Load squashing
e Write combining

e Uncached memory

23.8

LINE FILL BUFFERS?

Multiple roles:

e Asynchronous memory requests

e Load squashing
e Write combining

e Uncached memory

23.9

LINE FILL BUFFERS?

CPU design: what to do on a cache miss?

24 .1

LINE FILL BUFFERS?

CPU design: what to do on a cache miss?

e Send out memory request

24 .1

LINE FILL BUFFERS?

CPU design: what to do on a cache miss?

e Send out memory request

e Wait for completion

24 .1

LINE FILL BUFFERS?

CPU design: what to do on a cache miss?

e Send out memory request
e Wait for completion

e Blocks other loads/stores

24 .1

LINE FILL BUFFERS?

Solution: keep track of address in LFB

24 .2

LINE FILL BUFFERS?

Solution: keep track of address in LFB

e Send out memory request

24 .2

LINE FILL BUFFERS?

Solution: keep track of address in LFB

e Send out memory request

e Allocate LFB entry

24 .2

LINE FILL BUFFERS?

Solution: keep track of address in LFB

e Send out memory request
e Allocate LFB entry
e Store addressin LFB

24 .2

LINE FILL BUFFERS?

Solution: keep track of address in LFB

e Send out memory request
e Allocate LFB entry
e Store addressin LFB

e Serve other loads/stores

24 .2

LINE FILL BUFFERS?

Solution: keep track of address in LFB

e Send out memory request
e Allocate LFB entry

e Store addressin LFB

o Serve other loads/stores

e Pending request eventually completes

24 .2

LINE FILL BUFFERS?

Solution: keep track of address in LFB

e Send out memory request

e Allocate LFB entry

o Store addressin LFB
e Serve other loads/stores

e Pending request eventually completes

24 .3

LINE FILL BUFFERS?

Allocate LFB entry

May contain data from previous load

RIDL exploits this

24 .4

EXPERIMENTS

Experiments in the paper

25.1

EXPERIMENTS

000000

00000

00000

00000

Experiments in the paper

25.2

EXPERIMENTS

10000+ “ 1 B hit_Ifb
Zeros

804
s A
\ 5 | e noise
600 10
T 10
409 <
>
D 100
20 & 1077
10—1.
N Q))) N A))
\@ o @g & \sb R S\O &
S S R S S S
@ @ @ @ K\\‘r ‘\\\) &\0 ;\\Q

Experiments in the paper

25.3

EXPERIMENTS

000000 “ I- hit_Ifb
Zeros
800
P =
600
[]
5‘ []
= [
(0]
>
(o >
Q e B noise
L O E
-
O
10 S,_;’ 100 -
10—1.
1072)] | | | I
\\\\\\\\
s“’ OO TN SRS
\ \ \ @ O O S
. ~(\ ~(\ éo \}‘(\
& EFEFF IS

Conclusion: our primary RIDL instance leaks from Line

Fill Buffers

25.4

How do we mount a RIDL attack?

26.1

THREAT MODEL

Victim VM

Victim VM in the cloud

26.2

THREAT MODEL

We get a VM on the same server

26.3

THREAT MODEL

Line Fill
Buffers

We make sure it is co-located

26.4

THREAT MODEL

Victim VM
Line Fill
Buffers /etc/shadow
SSH server

Victim VM runs an SSH server

26.5

CHALLENGES

X Getting data in flight
X Leaking data
X Filtering data

27 .1

IN-FLIGHT DATA

Victim VM
Line Fill
Buffers /etc/shadow
SSH server

How do we get data in flight?

27 .2

IN-FLIGHT DATA

Victim VM

Line Fill
Buffers

SSH client SSH server

We run an SSH client...

/etc/shadow

27.3

IN-FLIGHT DATA

Victim VM

Line Fill
Buffers

)
SSH client SSH Connection L} SSH server

... that keeps connecting to the SSH server

/etc/shadow

27 .4

IN-FLIGHT DATA

Victim VM
. . |
Line F'”<Z Load |/etc/shadow

Buffers

SSH client SSH server

The SSH server loads /etc/shadow through LFB

27.5

IN-FLIGHT DATA

Victim VM
. . |
Line F'”<Z Load |/etc/shadow

Buffers

SSH client SSH server

The contents from /etc/shadow arein flight

27.6

CHALLENGES

X Getting data in flight
X Leaking data
X Filtering data

28.1

LEAKING

Victim VM

Line Fill
Buffers

SSH client SSH server

Now that the data is in flight, we want to leak it

/etc/shadow

28.2

Attacker VM

RIDL

SSH client

LEAKING

Line Fill
Buffers

Victim VM

/etc/shadow

SSH server

We run our RIDL program on our servetr...

28.3

Attacker VM

RIDL

SSH client

LEAKING

Leak

\

Line Fill
Buffers

Victim VM

/etc/shadow

SSH server

...which leaks the data from the LFB

28.4

What does this program look like?

29.1

if (_xbegin() == _XBEGIN_STARTED) {
char byte = x(volatile char *)NULL;
char *p = probe + byte * 4096;
*(volatile char *)p;
_xend();

for (i = 0; i < 256; ++i) { i
to = __rdtsc(); :
*(volatile char *)(probe + i =* 4®96)ﬂ
dt = __rdtsc() - to; i

Probe Array

29.2

if (_xbegin() == _XBEGIN_STARTED) {
char byte = x(volatile char *)NULL;
char *p = probe + byte * 4096;
*(volatile char *)p;
_xend();

for (i = 0; i < 256; ++i) { i
to = __rdtsc(); :
*(volatile char *)(probe + i =* 4®96)ﬂ
dt = __rdtsc() - to; i

Probe Array

29.3

if (_xbegin() == _XBEGIN_STARTED) {
char byte = x(volatile char *)NULL;
char *p = probe + byte * 4096;
*(volatile char *)p;
_xend();

for (i = 0; i < 256; ++i) { §
to = __rdtsc(); :
*(volatile char *)(probe + i =* 4®96)ﬂ
dt = __rdtsc() - to; i

Probe Array

29 .4

if (_xbegin() == _XBEGIN_STARTED) {
char byte = x(volatile char *)NULL;
char *p = probe + byte * 4096;
*(volatile char *)p;
_xend();

for (i = 0; i < 256; ++i) { §
to = __rdtsc(); :
*(volatile char *)(probe + i =* 4®96)ﬂ
dt = __rdtsc() - to; i

Probe Array

29.5

if (_xbegin() == _XBEGIN_STARTED) {
char byte = x(volatile char *)NULL;
char *p = probe + byte * 4096;
*(volatile char *)p;
_xend();

for (i = 0; i < 256; ++i) { §
to = __rdtsc(); :
*(volatile char *)(probe + i =* 4®96)ﬂ
dt = __rdtsc() - to; i

Probe Array

29.6

if (_xbegin() == _XBEGIN_STARTED) {
char byte = *(volatile char *)NULL;
char *p = probe + byte * 4096;
*(volatile char *)p;
_xend();

for (i = 0; i < 256; ++i) { §
to = __rdtsc(); :
*(volatile char *)(probe + i =* 4®96)ﬂ
dt = __rdtsc() - to; i

Probe Array

29.7

if (_xbegin() == _XBEGIN_STARTED) {
char byte = *(volatile char *)NULL;

Leak in-flight data from an invalid or |

] unmapped page, also works for

demand paging. ;
(3 RELOAD

for (i = 0; i < 256; ++i) { §
to = __rdtsc(); :
*(volatile char *)(probe + i =* 4®96)ﬂ
dt = __rdtsc() - to; i

Probe Array

29.8

if (_xbegin() == _XBEGIN_STARTED) {
char byte = x(volatile char *)NULL;
char *p = probe + byte * 4096;
*(volatile char *)p;
_xend();

for (i = 0; i < 256; ++i) { §
to = __rdtsc(); :
*(volatile char *)(probe + i =* 4®96)ﬂ
dt = __rdtsc() - to; i

Probe Array

29.9

3
(@ RiDL
{{ Usethe leaked byte asan index |
' into our probe array. ¥
i il 2 b (= blabas Clnbnanbnl S tul o7 o chutul ol Ub An ittt B~ 4 -t ikt ! i
i *(volatile char *)p;]
i _xend(); i
(3 RELOAD

for (i = 0; i < 256; ++i) { i
to = __rdtsc(); :
*(volatile char *)(probe + i =* 4®96)ﬂ
dt = __rdtsc() - to; i

Probe Array

29.10

if (_xbegin() == _XBEGIN_STARTED) {
char byte = x(volatile char *)NULL;
char *p = probe + byte * 4096;
*(volatile char *)p;
_xend();

| for (i = 0; i < 256; ++i) { i
| to = __rdtsc(); :
i *(volatile char x)(probe + i * 4096);!
i dt = __rdtsc() - to; i
] i

Probe Array

29.11

if (_xbegin() == _XBEGIN_STARTED) {
char byte = x(volatile char *)NULL;
char *p = probe + byte * 4096;
*(volatile char *)p;
_xend();

| for (i = 0; i < 256; ++i) { i
| to = __rdtsc(); :
i *(volatile char x)(probe + i * 4096);!
i dt = __rdtsc() - to; i
] i

Probe Array

SLOW

29.12

if (_xbegin() == _XBEGIN_STARTED) {
char byte = x(volatile char *)NULL;
char *p = probe + byte * 4096;
*(volatile char *)p;
_xend();

| for (i = 0; i < 256; ++i) { i
| to = __rdtsc(); :
i *(volatile char x)(probe + i * 4096);!
i dt = __rdtsc() - to; i
] i

Probe Array

SLOW

29.13

if (_xbegin() == _XBEGIN_STARTED) {
char byte = x(volatile char *)NULL;
char *p = probe + byte * 4096;
*(volatile char *)p;
_xend();

| for (i = 0; i < 256; ++i) { i
| to = __rdtsc(); :
i *(volatile char x)(probe + i * 4096);!
i dt = __rdtsc() - to; i
] i

Probe Array

SLOW

29.14

if (_xbegin() == _XBEGIN_STARTED) {
char byte = x(volatile char *)NULL;
char *p = probe + byte * 4096;
*(volatile char *)p;
_xend();

| for (i = 0; i < 256; ++i) { i
| to = __rdtsc(); :
i *(volatile char x)(probe + i * 4096);!
i dt = __rdtsc() - to; i
] i

Probe Array

FAST

29.15

CHALLENGES

v/ Getting data in flight
X Leaking data
X Filtering data

30

RIDL is like drinking from a fire hose

31

1

You just get whatever datais in flight!

31.

FILTERING DATA

How can we filter data?

32.1

FILTERING DATA

How can we filter data?

e We want to leak from /etc/shadow

32.1

FILTERING DATA

How can we filter data?

e We want to leak from /etc/shadow

e Firstline /etc/shadowis forroot

32.1

FILTERING DATA

How can we filter data?

e We want to leak from /etc/shadow
e Firstline /etc/shadow is for root

e Starts with "root:"

32.1

FILTERING DATA

How can we filter data?

We want to leak from /etc/shadow
First line /etc/shadow is for root
Starts with "root:"
Use prefix matching:

s Match = we learn a new byte

= No Match = discard

32.1

FILTERING

Known Prefix

o| t|:

32.2

FILTERING

Known Prefix

[

o

0o

t

32.3

FILTERING

Known Prefix

r O| O t

No Match

h|lt|t|p]|s]|:|/]]/

32.4

FILTERING

Known Prefix

r O| O t

No Match
h|lt|t|p]|s]|:]|/
ryofo|t S|p

32.5

FILTERING

Known Prefix

r O| O t

No Match
h|lt|t|p]|s]|:]|/
Match
r{folo|t|:[S]|p

32.6

FILTERING

Known Prefix

r O| O t

No Match
h|lt|t|p]|s]|:]|/
Match
r{folo|t|:[S]|p
R|IE|A|[D|M|E T

32.7

FILTERING

Known Prefix

r O| O t

No Match
h|lt|t|p]|s]|:]|/
Match
r{folo|t|:[S]|p
No Match
RIE|IA|IDIM|IE]| . |T

32.8

FILTERING

Known Prefix

r O| O t

No Match
h|lt|t|p]|s]|:|/]]/
Match
rfojlo|t|:|S|{p]|/
No Match
RIE[A|D|IM|E]| . |T
r{oflo]|t S|p|/

32.9

FILTERING

Known Prefix

r O| O t

No Match
h|lt|t|p]|s]|:|/]]/
Match
rfojlo|t|:|S|{p]|/
No Match
R|IE|A[D|IM|E]| . |T
Match
rfojlo|t|:|S|{p]|/

32.10

CHALLENGES

v/ Getting data in flight
v/ Leaking data
X Filtering data

33

MORE EXAMPLES

More examples in the paper:

34

MORE EXAMPLES

More examples in the paper:

e Leakinginternal CPU data (e.g. page tables)

34

MORE EXAMPLES

More examples in the paper:

e Leakinginternal CPU data (e.g. page tables)

e Arbitrary kernel read

34

MORE EXAMPLES

More examples in the paper:

e Leakinginternal CPU data (e.g. page tables)
e Arbitrary kernel read

e Leakingin the browser

34

MITIGATION

e Same-thread:
= verw overwrite all buffers
» Special Assembly snippets
e Cross-thread:

s Complex scheduling and synchronization

35.1

MITIGATION

e Same-thread:
= verw overwrite all buffers
» Special Assembly snippets
e Cross-thread:
s Complex scheduling and synchronization

» Disable Intel Hyper-Threading®

35.2

Disclosure process

36.1

2018

2019

Sep

Oct

Nov

Dec

Feb

Mar

May

36.2

— Sep 12 - Reported to Intel

2018

2019

Sep

Oct

Nov

Dec

Jan

Feb

Mar

May

36.3

— Sep 12 - Reported to Intel

2018

2019

Sep

Oct ¢Nov

Dec

Jan

Feb

Mar

May

Nov 1 - RIDL Submission =

36.4

— Sep 12 - Reported to Intel

2018

2019

Sep

Oct ¢Nov

dec

Jan

Feb

Mar

Apr

May

Nov 1 - RIDL Submission =

— Dec 2 - Three Other Finders

36.5

— Sep 12 - Reported to Intel

2018

2019

Sep

Oct ¢Nov

dec

Jan

Feb

Mar

Apr

May

Nov 1 - RIDL Submission =

— Dec 2 - Three Other Finders

& Giorgi Maisuradze

& Dan Horea Lutas
& Volodymyr Pikhur

36.6

May 10 - More Finders

— Sep 12 - Reported to Intel

2018

2019

Sep

Oct ¢Nov

dec

Jan

Feb

Mar

Apr

May

Nov 1 - RIDL Submission =

— Dec 2 - Three Other Finders

& Giorgi Maisuradze

& Dan Horea Lutas
& Volodymyr Pikhur

36.7

Fa[/kS@ha Kpi g?gAhmad =

@ph C
BOSP\\?ﬁr @[rb BogMoregingdts |-

<v
Sl\%att @&)Gmtogtelg% Y
430 Sebagfihm o

X
S
Frr'ﬁ%)a BEpfoct P | b @] dgSba

alsy rad@ -Frank
@Ck‘“ ? QMW&

> |St|an 2 N
H@W’@@Kawakaml ‘3@ *&@a Wik

Yaromgepia sy P restp,aerlamcﬂPU %K
TG . MillerMillurislyssaser
o @ Branco Lutas
= /%//77 Marina Kaveh

36.8

F@ng@ha Kpi g@gAhmad

c 2
@[T’g @ph@g oregnﬂ S

MBa?’Ei mkhur@ Herbel

CD
al to Etel % U)

/\"\(‘ I’\I/\

H @FitZ @ istian é ﬂ

oreaKawakamj 0=

Yaromgchwars P restp,aerlamcﬂ!U
'ﬂ

Mil b@rﬁﬁdﬂym"@rk
4@ fl%ler Branco Lutas
/)

Marina Kaveh

36.9

MDS TOOL

We wrote a tool to verify your system:

|
O
X

Operating system:
Processor
Microarchitecture:
Microcode:

Memory:

Windows 10 Enterprize

Intel(R) Core(Th) i7-87 00K CPL) @ 3.70GHz
Coffee Lake

Ox0000000096

859GE

Direct Branch Speculation

Indirect Branch Speculation

Speculative Store Bypass

Status:

KPTI Present:
KPTI Enabled:
PCID Accelerated:
PCID Invalidation;

Yulnerable
Yes
Yes
Yes
Yes

L1 Terminal Fault

Status:

L1TF Present:

PTE Inversion:
SMT:

L1d Flugh Present:
L1d Flush:

Yulnerable
Yes

Yes
Yulnerable
No
Awailable

Micro-architectural Data Sampling

Line Fill Buffers (MFEDS):
Store Buffers (MSBDS):
Load Ports (MLPDS):
Uncached Memory

SMT:

MD_CLEAR:

Yulnerable
Yulnerable
Wulnerable
Wulnerable
Yulnerable
Not Available

37

CONCLUSION

38.1

CONCLUSION

e Spectre and Meltdown, just one mistake?

38.1

CONCLUSION

e Spectre and Meltdown, just one mistake?

e New class of speculative execution attacks

38.1

CONCLUSION

e Spectre and Meltdown, just one mistake?
e New class of speculative execution attacks

e Many more buffers other than caches to leak from

38.1

CONCLUSION

Spectre and Meltdown, just one mistake?
New class of speculative execution attacks
Many more buffers other than caches to leak from

Does not rely on addresses = hard to mitigate

38.1

CONCLUSION

Spectre and Meltdown, just one mistake?

New class of speculative execution attacks

Many more buffers other than caches to leak from
Does not rely on addresses = hard to mitigate

Across security domains, and in the browser

38.1

CONCLUSION

Spectre and Meltdown, just one mistake?

New class of speculative execution attacks

Many more buffers other than caches to leak from
Does not rely on addresses = hard to mitigate

Across security domains, and in the browser

W @themadstephan @vu5ec
https://mdsattacks.com

38.2

https://www.twitter.com/themadstephan
https://www.twitter.com/vu5ec
https://mdsattacks.com/

