

Postcards from the post-HTTP world

Stefano Calzavara

(Università Ca' Foscari Venezia)

joint work with Riccardo Focardi, Matus Nemec, Alvise Rabitti & Marco Squarcina

A dirge for HTTP

- The Web is fast evolving from HTTP to HTTPS
 - Trusted certificates issued for free by Let's Encrypt
 - Major web browsers marking HTTP as insecure
 - Encrypted web traffic > Unencrypted web traffic since 2017

Yay! Safely use Wifi everywhere!

But can we trust HTTPS?

Well, it's much better than HTTP, but TLS has been attacked many times....

Hey, these have been fixed on top sites... right?

Vulnerability amplification

- The security of any website depends on the security of <u>many others</u>!
 - TLS vulnerabilities get amplified in the web ecosystem
 - Even a single TLS vulnerability might wreak havoc!!!

Contributions

- Review of existing attacks against TLS
 - Identified those still working in modern browsers
 - Characterized in terms of attack trees
- Analysis platform for web applications
 - Collects data for "relevant" hosts
 - Runs existing tools to build a security report
- Large-scale analysis of the Web
 - Page integrity (script injection)
 - Authentication credentials (cookies)
 - Web tracking
- First quantitative analysis of the impact of TLS vulnerabilities on web application security!

Attack trees for TLS security

- Attack trees ~ boolean formulas to express attack conditions
- Family of insecure channels
 - Tainted: allow MITM
 - Leaky: allow decryption
 - o Partially leaky: side-channels
- Useful abstraction layer for web application (in-)security
- Full attack trees in the paper

Goal: Learn the session keys (allows decryption)

- 1 Decrypt RSA key exchange offline
 - & 1 RSA key exchange is used
 - | 1 RSA used in the highest TLS version
 - 2 Downgrade to TLS version preferring RSA
 - & 2 RSA decryption oracle available on:
 - 1 This host
 - 2 Host with the same certificate
 - 3 Host with the same public RSA key

Data collection

- Access <u>www.example.com</u> using Headless Chrome
- Collect the following information:
 - Serialized DOM
 - Cookies
 - Hosts serving sub-resources (scripts, images, etc.)
- Perform sub-domain enumeration on <u>example.com</u>
- Run existing TLS analysis tools on the collected hosts
- Map the output of the tools to the attack trees
- Build a security report

10k websites from Alexa ⇒ ~100k scanned hosts!

Preliminary statistics

Exploitable TLS vulnerabilities in 5574 hosts (5.5%)

Insecure channel	Number of hosts	Percentage
Tainted	4818	4.8%
Leaky	733	<1%
Partially leaky	912	<1%

RQ: How does this harm web application security?

Page integrity

- 898 homepages at danger of script injection due to tainted channels!
 - 660 cases due to remote script inclusion (~75%)
 - Ineffective adoption of Sub Resource Integrity (SRI)
- Popular script providers lead to vulnerability amplification!
 - 188 homepages harmed by Baidu
 - 126 homepages harmed by Linkedin

Cookies

- Cookies are the cornerstone of client authentication.
- They can be set as host-only, but are often shared across sub-domains
- Confidentiality considerations
 - Huge attack surface
 - Exfiltration just requires partially leaky channels
 - Exfiltration via script injection (HttpOnly)
- Integrity considerations
 - Huge attack surface
 - ... which can be reduced by the __Host- prefix

Cookies: results

Issue	Host-only	Domain	Total
Confidentiality	12.5%	21.6%	19.1%
Integrity	17.8%	19.1%	18.7%

- 412 websites whose session cookies all have low confidentiality
 - HttpOnly would halve this number, but might break compatibility
- 543 websites whose session cookies all have low integrity
 - The __Host- prefix would help in 139 cases, but only one website is using it!
 - 22 cases where this would not break compatibility

Web tracking

- TLS vulnerabilities in popular trackers might breach privacy at scale!
 - Tracking cookies sent over leaky channels may reveal cross-site navigations
 - This can be forced in pages which already suffer from script injection
- Similar analysis for tracking cookies on HTTP (Englehardt et al., WWW 2015)

Web tracking: results

Vulnerable host	Including websites
snap.licdn.com	126
I.betrad.com	100
hbopenbid.pubmatic.com	76

- Attacking PubMatic would allow profiling over 142 websites
- Active network attackers could amplify this threat to 968 websites

Closing remarks

- HTTPS is essential for web application security, but is not a panacea
- Page integrity
 - o 10% of the homepages vulnerable to script injection
 - 75% of such issues due to remote script inclusion (SRI?)
- Session cookies
 - 10% of the websites vulnerable to cookie stealing (Domain?)
 - 13% of the websites vulnerable to cookie forcing (__Host-?)
- Web tracking
 - A single leaky tracker enables profiling on 142 websites
 - Extended to 968 websites for a stronger variant of the attack
- How's the road forward?

Interested in an internship?

- We plan to release our analysis platform as a web application
- Ongoing collaboration with Cryptosense (Paris)
- We need enthusiastic young developers for this task! ;-)

Cryptosense

SECURE CRYPTO, EVERYWHERE.

Contacts:

- Stefano Calzavara calzavara@dais.unive.it
- Riccardo Focardi focardi@unive.it