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AFL,	honggFuzz,	libFuzzer	
CVE’s	galore	

An	Overview	of	Fuzzing	

Popular	in	the	industry	

Time-tested	technique	

Google,	Microsoft	

Source:			lcamtuf.coredump.cx/afl	
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Fuzzing	platforms	
MSRD,	OSS-Fuzz,	FuzzBuzz,	FuzzIt		

Most	popular:	coverage-guided	fuzzing	
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Coverage-guided	Fuzzing	

✓

X

Angora	
Steelix	 FidgetyAFL	

T-Fuzz	

VUzzer	

Driller	

SkyFire	

QSYM	

MutaGen	

AFLFast	

CollAFL	

(<<	N)	

(~	N)	

(N)	test	cases	
	36–612%		overhead	

zZZZ
… 

Coverage-
guided	
Tracing	

▲	0.3%	
▲	(<<	N)	

▲	Orthogonal	to	tracing,	generation	
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New	coverage	

No	new	coverage	

Trigger	bugs	
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Dynamic	translation	 Static	callbacks	 Static	inlining	

slower		 faster	

How	are	coverage-increasing	test	cases	found?	
By	tracing	every	test	case!	

binary-only	
(“black-box”)		

from	source	
(“white-box”)		
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How	do	fuzzers	spend	their	time?	
AFL	–	“naïve”	fuzzing	
Driller	–	“smart”	fuzzing	

▼	O1:		>	90%	time	on	test	case	tracing,	execution	

▼	O2:		<	3/10000	test	cases	increase	coverage	

8	benchmarks,	1hr	trials	

Avg.	rate	
cvg.-incr.	
test	cases	

6.20E-5	
2.57E-4	
6.53E-5	

Fuzzer,		
tracer	

AFL-Clang	
AFL-QEMU	

Driller-QEMU	

Avg.	%	time	
on	exec/
trace	

91.8	
97.3	
95.9	
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Likelihood	of	coverage-increasing	test	cases?	

5x	24hr	trials		
x	8	benchmarks	

AFL-QEMU	

▼	O3:	rate	decreases	
over	time	(<	1/10000)	
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Impact	of	tracing	every	test	case?	
▼	Over	90%	of	time	is	spent	tracing	test	cases…		
▼	Over	99.99%	of	which	are	discarded!		
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Equivalent	to	checking	every	straw	to	find	the	needle!	
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Why	is	tracing	every	test	case	expensive?	

benchmark	 #	blocks	
bsdtar	 31379	
pdftohtml	 54596	
readelf	 21249	
tcpdump	 33743	

 
 

Many	blocks,	edges	

Long	exec	paths,	loops	

Storing	coverage	
•  Bitmaps,	arrays	

Multiple	additional		
instructions	per	block	

Block 
<B4>

<B1>
<B1>
<B1>  
<B4>  
 

call  loc.__afl_maybe_log 
mov rax, qword [arg_10h] 
mov  rcx,  qword  [arg_8h] 
mov rdx, qword [rsp] lea 
rsp, qword rsp + 0x98

Overhead	quickly	adds	up	
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Coverage-guided  
Tracing 
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Guiding	Principle	
 
 

Can	we	identify	coverage-increasing	test	cases		
without	tracing	every	test	case?	
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Find	New	Coverage	Without	Tracing	
 
 

Apply	and	dynamically	remove	interrupts	

B1 
<init>

B2 
<this>

B3 
<that>

B4 
<exit>

401a49: 	55 		push	%rbp		
401a4a: 	48	89	e5 		mov	%rsp,	%rbp	
401a4d: 	48	81	ec 		sub	$0x380,	%rsp	
401a54: 	89	bd	8c 	mov	%edi,	-0x374(%rbp)	

401a49: 	CC 		INT	03	
401a4a: 	48	89	e5 		mov	%rsp,	%rbp	
401a4d: 	48	81	ec 		sub	$0x380,	%rsp	
401a54: 	89	bd	8c 	mov	%edi,	-0x374(%rbp)	

Overwrite	with	interrupt	

B1 
<INT>

401a49: 	55 		push	%rbp		
401a4a: 	48	89	e5 		mov	%rsp,	%rbp	
401a4d: 	48	81	ec 		sub	$0x380,	%rsp	
401a54: 	89	bd	8c 	mov	%edi,	-0x374(%rbp)	

Hit	

Reset	

Continue!	
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New	coverage!	
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Coverage-guided	Tracing	

 
 

<INT> 
<INT> 

<INT> 
<INT> <INT> <INT> 
<INT> <INT> <INT> 
<INT> <INT> <INT> 

✓				
✓
				
✓
✓

✓✓

✓
✓
✓

Hit	one	

▲	Common	case	(99.99%)	don’t	hit—thus	aren’t	traced		
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Approach: 	Trace	only	coverage-increasing	test	cases	
	 	 	 	 	”Filter-out”	those	that	don’t	hit	an	interrupt	

✓				 Trace	
Reset	
Continue	

▲	Approaches	native	execution	speed	(0%	overhead)	
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Incorporating	CGT	into	Fuzzing	

✓

X

<INT> 
<INT> <INT> <INT> 

<B1>	
<B2>	
<B3>	

✓

X
(~ N)	

(<<	N)	

▲	(~	N)	of	(N):	
native	speed!	
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Implementation:	UnTracer	
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Evaluation 
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Performance	Evaluation	

Fuzzing	
Tracer	 Description	

AFL-Dyninst	 [BB]	Static	rewriting	

AFL-QEMU	 [BB]	Dynamic	
translation	

AFL-Clang	 [WB]	Assembly	rewriting	

UnTracer		
(Dyninst)	

[BB]	Coverage-guided	
Tracing	(static	rewriting)	

1-core	VM’s	to	avoid	OS	noise	

Goal:	isolate	tracing	overhead	
		

Strip	AFL	to	tracing-only	code	

8	diverse	real-world	benchmarks	

Compare	tracer	exec	times	
•  5	days’	test	cases	per	benchmark	
•  5x	trials	per	day	of	test	cases		
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[BB]	=	black-box	(binary-only)	
[WB]	=	white-box	(from	source)	
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Benchmarks	
Benchmark	name	 Benchmark	type	

bsdtar	(libarchive)	 archiving	
cert-basic	(libksba)	 cryptography	

cjson	(cjson)	 web	development	
djpeg	(libjpeg)	 image	processing	

pdftohtml	(poppler)	 document	processing	
readelf	(binutils)	 development	

sfconvert	(audiofile)	 audio	processing	
tcpdump	(tcpdump)	 networking	
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AVG.	relative	overhead:	

▼  AFL-Dyninst 	518%	

▼ 	AFL-QEMU	 	618%	

▲  UnTracer	 	0.3%	

	

Can	CGT	beat	tracing	all	with	Black-box?	
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AVG.	relative	overhead:	

▼  AFL-Dyninst 	518%	

▼ 	AFL-QEMU	 	618%	

▲  UnTracer	 	0.3%	

▼ AFL-Clang 	36%	

	

	

Can	CGT	beat	tracing	all	with	White-box?	
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Can	CGT	boost	hybrid	fuzzing	throughput?	

QSYM	(concolic	exec	+	fuzzing)	

Goal:	measure	impact	on		
total	test	case	throughput	

8	benchmarks,	5x	24-hr	trials	

QSYM-UnTracer	throughput:	
▲	616% 	>>			QSYM-QEMU	
▲	79%	 	>>			QSYM-Clang	
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▼ Fuzzers	find	coverage-increasing	test	cases	by	tracing	all	of	them	
▼ Costs	over	90%	of	time	yet	over	99.99%	are	inevitably	discarded	
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These	resources	could	be	better	used	to	find	bugs!	
	
	
	

▲ Compatibility:	 	“Filter-out”	approach	allows	plugging-in	any	tracer		

CGT	restricts	tracing	to	the	few	guaranteed	to	increase	coverage	
	
	
▲	Performance:	 	Cuts	tracing	overhead	from	36-618%	to	0.3%	

	 	 	Boosts	test	case	throughput	by	79-616%		

▲ Orthogonality:	 	Can	combine	with	other	fuzzing	improvements	
	 	 	(e.g.,	better	test	case	generation,	faster	tracing)	

	

Conclusions:	Why	Coverage-guided	Tracing?	
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Our	open-sourced	software:	
• UnTracer-AFL	 	UnTracer	integrated	with	AFL	
• afl-fid	 	 	 	AFL	suite	for	fixed	input	datasets	
• FoRTE-FuzzBench 	Our	8	real-world	benchmarks	

All	repos	are	available	here!	https://github.com/
FoRTE-Research	

Thank	you!	
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Current	work:	edge	
coverage,	hit	counts	

Expanding	Coverage	Metrics	

Static	critical	edge	
handling	doable	

Hit	counts	need	more	
complex	transforms	

Block 
<D>

Block 
<B>

Block 
<C>

Block 
<A> Covered	Blocks	

Implicit	Edges	

A,	B,	C	

A-B,	B-C	
A-C	

A,	D,	C	

A-D,	D-C	
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Can	approximate	Intel-PT	overhead:	
• AFL-Clang	=	36%	OH	
• AFL-Clang	≅	10-100%	OH	rel.	to	AFL-Clang-fast	
• AFL-Clang-fast	≅	18-32%	OH	
• Intel-PT	≅	7%	OH	rel.	to	AFL-Clang-fast	
• Intel-PT	≅	19-35%	OH		

Trace	decoding	adds	way	more	

CGT	versus	Hardware-Assisted	Tracing	
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Oracle	forkserver	uses	assembly-time	instrumentation	
	
Theoretically	doable	via	binary	rewriting	

• Dyninst’s	performance	infeasible	
	
Binary	hooking	an	alternative		

	e.g.,	via	LD_PRELOAD		

Fully	Black-box	(binary-only)	Implementation	
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Intuition:	restrict	tracing	to	coverage-increasing	test	cases	
	
1.  Statically	overwrite	start	of	each	block	with	an	interrupt	

•  The	“Interest	Oracle”	
2.  Get	a	new	test	case	and	run	it	on	the	oracle	
3.  If	an	interrupt	is	triggered:	

•  Trace	the	test	case’s	code	coverage	
•  Unmodify	(reset)	all	newly-covered	blocks	

4.  Return	to	step	2	

Appendix	--	CGT	step-by-step	
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As	more	blocks	unmodified	over	time,	
binary	starts	to	mirror	the	original	

Thus,	most	testcases	are	run	at	
native	execution	speed!	

Appendix	--	CGT	step-by-step	
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•  Built	atop	AFL	
•  Dyninst	for	CFG/tracing	
•  File	I/O	for	mod/unmod	

Appendix	--	Implementation:	UnTracer	
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