
Full-speed Fuzzing:
Reducing Fuzzing Overhead

through Coverage-guided Tracing
Stefan Nagy

snagy2@vt.edu

Matthew Hicks
mdhicks2@vt.edu

COMPUTER SCIENCE

1	

COMPUTER SCIENCE

Fuzzing

2	

COMPUTER SCIENCE

AFL,	honggFuzz,	libFuzzer	
CVE’s	galore	

An	Overview	of	Fuzzing	

Popular	in	the	industry	

Time-tested	technique	

Google,	Microsoft	

Source:			lcamtuf.coredump.cx/afl	

3	

Fuzzing	platforms	
MSRD,	OSS-Fuzz,	FuzzBuzz,	FuzzIt		

Most	popular:	coverage-guided	fuzzing	

COMPUTER SCIENCE

Coverage-guided	Fuzzing	

✓

X

Angora	
Steelix	 FidgetyAFL	

T-Fuzz	

VUzzer	

Driller	

SkyFire	

QSYM	

MutaGen	

AFLFast	

CollAFL	

(<<	N)	

(~	N)	

(N)	test	cases	
	36–612%		overhead	

zZZZ
…

Coverage-
guided	
Tracing	

▲	0.3%	
▲	(<<	N)	

▲	Orthogonal	to	tracing,	generation	
4	

New	coverage	

No	new	coverage	

Trigger	bugs	

COMPUTER SCIENCE

Dynamic	translation	 Static	callbacks	 Static	inlining	

slower		 faster	

How	are	coverage-increasing	test	cases	found?	
By	tracing	every	test	case!	

binary-only	
(“black-box”)		

from	source	
(“white-box”)		

5	

COMPUTER SCIENCE

How	do	fuzzers	spend	their	time?	
AFL	–	“naïve”	fuzzing	
Driller	–	“smart”	fuzzing	

▼	O1:		>	90%	time	on	test	case	tracing,	execution	

▼	O2:		<	3/10000	test	cases	increase	coverage	

8	benchmarks,	1hr	trials	

Avg.	rate	
cvg.-incr.	
test	cases	

6.20E-5	
2.57E-4	
6.53E-5	

Fuzzer,		
tracer	

AFL-Clang	
AFL-QEMU	

Driller-QEMU	

Avg.	%	time	
on	exec/
trace	

91.8	
97.3	
95.9	

6	

COMPUTER SCIENCE

Likelihood	of	coverage-increasing	test	cases?	

5x	24hr	trials		
x	8	benchmarks	

AFL-QEMU	

▼	O3:	rate	decreases	
over	time	(<	1/10000)	

7	

COMPUTER SCIENCE

Impact	of	tracing	every	test	case?	
▼	Over	90%	of	time	is	spent	tracing	test	cases…		
▼	Over	99.99%	of	which	are	discarded!		

8	

Equivalent	to	checking	every	straw	to	find	the	needle!	

COMPUTER SCIENCE

Why	is	tracing	every	test	case	expensive?	

benchmark	 #	blocks	
bsdtar	 31379	
pdftohtml	 54596	
readelf	 21249	
tcpdump	 33743	

Many	blocks,	edges	

Long	exec	paths,	loops	

Storing	coverage	
•  Bitmaps,	arrays	

Multiple	additional		
instructions	per	block	

Block
<B4>

<B1>
<B1>
<B1>
<B4>

call loc.__afl_maybe_log
mov rax, qword [arg_10h]
mov rcx, qword [arg_8h]
mov rdx, qword [rsp] lea
rsp, qword rsp + 0x98

Overhead	quickly	adds	up	
9	

COMPUTER SCIENCE

Coverage-guided
Tracing

10	

COMPUTER SCIENCE

Guiding	Principle	

Can	we	identify	coverage-increasing	test	cases		
without	tracing	every	test	case?	

11	

COMPUTER SCIENCE

Find	New	Coverage	Without	Tracing	

Apply	and	dynamically	remove	interrupts	

B1
<init>

B2
<this>

B3
<that>

B4
<exit>

401a49: 	55 		push	%rbp		
401a4a: 	48	89	e5 		mov	%rsp,	%rbp	
401a4d: 	48	81	ec 		sub	$0x380,	%rsp	
401a54: 	89	bd	8c 	mov	%edi,	-0x374(%rbp)	

401a49: 	CC 		INT	03	
401a4a: 	48	89	e5 		mov	%rsp,	%rbp	
401a4d: 	48	81	ec 		sub	$0x380,	%rsp	
401a54: 	89	bd	8c 	mov	%edi,	-0x374(%rbp)	

Overwrite	with	interrupt	

B1
<INT>

401a49: 	55 		push	%rbp		
401a4a: 	48	89	e5 		mov	%rsp,	%rbp	
401a4d: 	48	81	ec 		sub	$0x380,	%rsp	
401a54: 	89	bd	8c 	mov	%edi,	-0x374(%rbp)	

Hit	

Reset	

Continue!	
12	

New	coverage!	

COMPUTER SCIENCE

Coverage-guided	Tracing	

<INT>
<INT>

<INT>
<INT> <INT> <INT>
<INT> <INT> <INT>
<INT> <INT> <INT>

✓				
✓
				
✓
✓

✓✓

✓
✓
✓

Hit	one	

▲	Common	case	(99.99%)	don’t	hit—thus	aren’t	traced		

13	

Approach: 	Trace	only	coverage-increasing	test	cases	
	 	 	 	 	”Filter-out”	those	that	don’t	hit	an	interrupt	

✓				 Trace	
Reset	
Continue	

▲	Approaches	native	execution	speed	(0%	overhead)	

COMPUTER SCIENCE

Incorporating	CGT	into	Fuzzing	

✓

X

<INT>
<INT> <INT> <INT>

<B1>	
<B2>	
<B3>	

✓

X
(~ N)	

(<<	N)	

▲	(~	N)	of	(N):	
native	speed!	

14	

Implementation:	UnTracer	

COMPUTER SCIENCE

Evaluation

15	

COMPUTER SCIENCE

Performance	Evaluation	

Fuzzing	
Tracer	 Description	

AFL-Dyninst	 [BB]	Static	rewriting	

AFL-QEMU	 [BB]	Dynamic	
translation	

AFL-Clang	 [WB]	Assembly	rewriting	

UnTracer		
(Dyninst)	

[BB]	Coverage-guided	
Tracing	(static	rewriting)	

1-core	VM’s	to	avoid	OS	noise	

Goal:	isolate	tracing	overhead	
		

Strip	AFL	to	tracing-only	code	

8	diverse	real-world	benchmarks	

Compare	tracer	exec	times	
•  5	days’	test	cases	per	benchmark	
•  5x	trials	per	day	of	test	cases		

16	

[BB]	=	black-box	(binary-only)	
[WB]	=	white-box	(from	source)	

	

COMPUTER SCIENCE

Benchmarks	
Benchmark	name	 Benchmark	type	

bsdtar	(libarchive)	 archiving	
cert-basic	(libksba)	 cryptography	

cjson	(cjson)	 web	development	
djpeg	(libjpeg)	 image	processing	

pdftohtml	(poppler)	 document	processing	
readelf	(binutils)	 development	

sfconvert	(audiofile)	 audio	processing	
tcpdump	(tcpdump)	 networking	

17	

COMPUTER SCIENCE

AVG.	relative	overhead:	

▼ AFL-Dyninst 	518%	

▼ 	AFL-QEMU	 	618%	

▲ UnTracer	 	0.3%	

	

Can	CGT	beat	tracing	all	with	Black-box?	

18	

COMPUTER SCIENCE

AVG.	relative	overhead:	

▼ AFL-Dyninst 	518%	

▼ 	AFL-QEMU	 	618%	

▲ UnTracer	 	0.3%	

▼ AFL-Clang 	36%	

	

	

Can	CGT	beat	tracing	all	with	White-box?	

19	

COMPUTER SCIENCE

Can	CGT	boost	hybrid	fuzzing	throughput?	

QSYM	(concolic	exec	+	fuzzing)	

Goal:	measure	impact	on		
total	test	case	throughput	

8	benchmarks,	5x	24-hr	trials	

QSYM-UnTracer	throughput:	
▲	616% 	>>			QSYM-QEMU	
▲	79%	 	>>			QSYM-Clang	

20	

COMPUTER SCIENCE

▼ Fuzzers	find	coverage-increasing	test	cases	by	tracing	all	of	them	
▼ Costs	over	90%	of	time	yet	over	99.99%	are	inevitably	discarded	

	
	
	

21	

These	resources	could	be	better	used	to	find	bugs!	
	
	
	

▲ Compatibility:	 	“Filter-out”	approach	allows	plugging-in	any	tracer		

CGT	restricts	tracing	to	the	few	guaranteed	to	increase	coverage	
	
	
▲	Performance:	 	Cuts	tracing	overhead	from	36-618%	to	0.3%	

	 	 	Boosts	test	case	throughput	by	79-616%		

▲ Orthogonality:	 	Can	combine	with	other	fuzzing	improvements	
	 	 	(e.g.,	better	test	case	generation,	faster	tracing)	

	

Conclusions:	Why	Coverage-guided	Tracing?	

COMPUTER SCIENCE

Our	open-sourced	software:	
• UnTracer-AFL	 	UnTracer	integrated	with	AFL	
• afl-fid	 	 	 	AFL	suite	for	fixed	input	datasets	
• FoRTE-FuzzBench 	Our	8	real-world	benchmarks	

All	repos	are	available	here!	https://github.com/
FoRTE-Research	

Thank	you!	

22	

COMPUTER SCIENCE

Current	work:	edge	
coverage,	hit	counts	

Expanding	Coverage	Metrics	

Static	critical	edge	
handling	doable	

Hit	counts	need	more	
complex	transforms	

Block
<D>

Block

Block
<C>

Block
<A> Covered	Blocks	

Implicit	Edges	

A,	B,	C	

A-B,	B-C	
A-C	

A,	D,	C	

A-D,	D-C	

23	

COMPUTER SCIENCE

Can	approximate	Intel-PT	overhead:	
• AFL-Clang	=	36%	OH	
• AFL-Clang	≅	10-100%	OH	rel.	to	AFL-Clang-fast	
• AFL-Clang-fast	≅	18-32%	OH	
• Intel-PT	≅	7%	OH	rel.	to	AFL-Clang-fast	
• Intel-PT	≅	19-35%	OH		

Trace	decoding	adds	way	more	

CGT	versus	Hardware-Assisted	Tracing	

24	

COMPUTER SCIENCE

Oracle	forkserver	uses	assembly-time	instrumentation	
	
Theoretically	doable	via	binary	rewriting	

• Dyninst’s	performance	infeasible	
	
Binary	hooking	an	alternative		

	e.g.,	via	LD_PRELOAD		

Fully	Black-box	(binary-only)	Implementation	

25	

COMPUTER SCIENCE

Intuition:	restrict	tracing	to	coverage-increasing	test	cases	
	
1.  Statically	overwrite	start	of	each	block	with	an	interrupt	

•  The	“Interest	Oracle”	
2.  Get	a	new	test	case	and	run	it	on	the	oracle	
3.  If	an	interrupt	is	triggered:	

•  Trace	the	test	case’s	code	coverage	
•  Unmodify	(reset)	all	newly-covered	blocks	

4.  Return	to	step	2	

Appendix	--	CGT	step-by-step	

26	

COMPUTER SCIENCE

As	more	blocks	unmodified	over	time,	
binary	starts	to	mirror	the	original	

Thus,	most	testcases	are	run	at	
native	execution	speed!	

Appendix	--	CGT	step-by-step	

27	

COMPUTER SCIENCE

•  Built	atop	AFL	
•  Dyninst	for	CFG/tracing	
•  File	I/O	for	mod/unmod	

Appendix	--	Implementation:	UnTracer	

28	

