Full-speed Fuzzing:
Reducing Fuzzing Overhead
through Coverage-guided Tracing

Stefan Nagy Matthew Hicks
snagy2@vt.edu mdhicks2@vt.edu

\/a

COMPUTER SCIENCE

VIRGINIA TECH.

Fuzzing

An Overview of Fuzzing

Time-tested technique G pes! Hbipeg-turbo

AFL, honggFuzz, libFuzzer b= mozjpe
CV E) I Mozilla Firefox 123 4 Internet Explorer 1234
S ga Ore Adobe Flash / PCRE 1234567 sqlite 22 3 4=
1 1 ibreOffice 123 4 oppler 1 2
Popular in the industry Lreofm i
. GnuTLS? GnuPG1234
Google, Microsoft
PuTTY12 ntpd 12
H bash (post-Shellshock) 1 2 tepdump 123456789
Fuzzing platforms i pdump
pdfium ! 2 ffmpeg12345

MSRD, OSS-Fuzz, FuzzBuzz, Fuzzlt

Source: Icamtuf.coredump.cx/afl

Most popular: coverage-guided fuzzing

Coverage-guided Fuzzing

Steelix FiggetyAFL A New coverage
VUzzer =

I_k AFLFast
Driller

QSYM G -
SkyFire
CollAFL

Angora

(<<N) Trigger bugs

Coverage-

T-Fuzz — 0' |
MutaGen gUIdEd :

Tracing

No new coverage

A (<< N) o5 test cases
A 0.3% ==S=S==°% overhead
A Orthogonal to tracing, generation

’ \7/a

fr

N

(

S

COMPUTER SCIENCE

VIRGINIA TECH

How are coverage-increasing test cases found?
By tracing every test case!

Dynamic translation Static callbacks Static inlining
G s ALLVM
B 9 movl %edl, @c OMPILER
opa %rbp INFRASTRUCTURE
|
slower faster
binary-only from source
(“black-box”) (“white-box”)

How do fuzzers spend their time?

1 " Avg. % ti Avg. rat
AFL — “naive” fuzzing vg. % time Avg. rate

Fuzzer, on exec/ cvg.-incr.

Driller — “smart” fuzzing tracer trace test cases
AFL-Clang 91.8 6.20E-5
8 benchmarks, 1hr trials AFL-QEMU 97.3 2 57E-4
Driller-QEMU 95.9 6.53E-5

v O1: >90% time on test case tracing, execution

v 02: <3/10000 test cases increase coverage

Likelihood of coverage-increasing test cases?

| — bsdtar
AFL_QEMU —— cert-basic
—— CjSON
— djpeg
— pdftohtml
— readelf

SX 24hr triaIS sfconvert
X 8 benchmarks

= tcpdump

v O3: rate decreases
over time (< 1/10000)

Impact of tracing every test case?

v Over 90% of time is spent tracing test cases...
v Over 99.99% of which are discarded!

Equivalent to checking every straw to find the needle!

N7/~ | COMPUTER SCIENCE

Why is tracing every test case expensive?

Storing coverage
* Bitmaps, arrays

Block

call 1loc. afl maybe log
mov rax, qgword [arg 10h]
mov rcx, gword [arg 8h]

mov rdx, qword [rsp]
rsp, gword rsp + 0x98

lea

Multiple additional ~b4”
instructions per block

Many blocks, edges
Long exec paths, loops

Overhead quickly adds up

<Bl>
<Bl>
<Bl>
<B4>

benchmark # blocks
bsdtar 31379
pdftohtml 54596
readelf 21249
tcpdump 33743

IIIIIIIIIIII

Coverage-guided

Tracing

10 N7/~ | COMPUTER SCIENCE
e

11

Guiding Principle

Can we identify coverage-increasing test cases
without tracing every test case?

Find New Coverage Without Tracing

Apply and dynamically remove interrupts

Bl
<INT>

D

B2
<this>

B3
<that>

S’

B4
<exit>

12

401210 KK

4(401a49:
4C 401a4a:
4(201a4d:

401a54:

401a49:
401a4a:
401a4d:
401a54:

niich %rhn

cc INT 03 e it

48 89 e5 mov %rsp, %rbp
48 81 ec sub SOx380, %rsp
89 bd 8c mov %edi, -0x374(%rbp) New coverage I

55 <4 Reset

48 89 e5 mov %rsp, %rbp
48 81 ec sub SO0x380, %rsp
89 bd 8c mov %edi, -0x374(%rbp) Continue!

Coverage-guided Tracing

Approach: Trace only coverage-increasing test cases
“Filter-out” those that don’t hit an interrupt

Hit one

Trace
Reset

Continue

A Common case (99.99%) don’t hit—thus aren’t traced

A Approaches native execution speed (0% overhead)
13 N7/~ | COMPUTER SCIENCE

Incorporating CGT into Fuzzing

Implementation: UnTracer

%W

<INT>
ElN:F; <INT>

A (N)of (N): <B1>

; <B2>
native speed! Jroeg

14

Evaluation

15 N7/~ | COMPUTER SCIENCE
e

16

Performance Evaluation

Goal: isolate tracing overhead

1-core VM’s to avoid OS noise

Strip AFL to tracing-only code

8 diverse real-world benchmarks

Compare tracer exec times

5 days’ test cases per benchmark
5x trials per day of test cases

[BB] = black-box (binary-only)
[WB] = white-box (from source)

Fuzzing

Description
Tracer escriptio

AFL-Dyninst [BB] Static rewriting

[BB] Dynamic

AFL-QEMU 4 slation
AFL-Clang [WB] Assembly rewriting

UnTracer [BB] Coverage-guided
(Dyninst) Tracing (static rewriting)

17

Benchmarks

Benchmark name

Benchmark type

bsdtar (libarchive)
cert-basic (libksba)
cjson (cjson)
djpeg (libjpeg)
pdftohtml (poppler)
readelf (binutils)
sfconvert (audiofile)

tcpdump (tcpdump)

archiving
cryptography
web development
image processing
document processing
development
audio processing

networking

N7/~ | COMPUTER SCIENCE

Can CGT beat tracing all with Black-box?

BN AFL-QEMU W AFL-Dyninst B UnTracer

AVG. relative overhead:

v AFL-Dyninst 518%

v AFL-QEMU 618%
A UnTracer 0.3% L

Can CGT beat tracing all with White-box?

B AFL-Clang B UnTracer

AVG. relative overhead:

v AFL-Dyninst 518%

v AFL-QEMU 618%
A UnTracer 0.3%
v AFL-Clang 36%

Can CGT boost hybrid fuzzing throughput?

mEm QSYM-QEMU B QSYM-Clang mm QSYM-UnTracer

Goal: measure impact on
total test case throughput

QSYM (concolic exec + fuzzing)

8 benchmarks, 5x 24-hr trials

QSYM-UnTracer throughput:
A 616% >> QSYM-QEMU I il I
A 79% >> QSYM-Clang " =

Conclusions: Why Coverage-guided Tracing?

v Fuzzers find coverage-increasing test cases by tracing all of them
v Costs over 90% of time yet over 99.99% are inevitably discarded

These resources could be better used to find bugs!

CGT restricts tracing to the few guaranteed to increase coverage

A Performance: Cuts tracing overhead from 36-618% to 0.3%
Boosts test case throughput by 79-616%

A Compatibility: “Filter-out” approach allows plugging-in any tracer

A Orthogonality: Can combine with other fuzzing improvements
(e.g., better test case generation, faster tracing)

21 N7/~ | COMPUTER SCIENCE

22

Thank you!

Our open-sourced software:

 UnTracer-AFL UnTracer integrated with AFL

e afl-fid AFL suite for fixed input datasets
* FORTE-FuzzBench Our 8 real-world benchmarks

All repos are available here! https://github.com/
FORTE-Research

23

Expanding Coverage Metrics

Current work: edge
coverage, hit counts

Static critical edge
handling doable

Hit counts need more
complex transforms

Block
<D>

Block

Covered Blocks
A, B, C
A, D, C

Implicit Edges
A-B, B-C
A-B; D-C

24

CGT versus Hardware-Assisted Tracing

Can approximate Intel-PT overhead:
* AFL-Clang = 36% OH
* AFL-Clang = 10-100% OH rel. to AFL-Clang-fast
* AFL-Clang-fast = 18-32% OH
* Intel-PT = 7% OH rel. to AFL-Clang-fast

* Intel-PT = 19-35% OH
Trace decoding adds way more

25

Fully Black-box (binary-only) Implementation

Oracle forkserver uses assembly-time instrumentation

Theoretically doable via binary rewriting
* Dyninst’s performance infeasible

Binary hooking an alternative
e.g., via LD_PRELOAD

26

Appendix -- CGT step-by-step

Intuition: restrict tracing to coverage-increasing test cases

1. Statically overwrite start of each block with an interrupt
* The “Interest Oracle”

2. Get a new test case and run it on the oracle

3. If aninterrupt is triggered:
 Trace the test case’s code coverage
 Unmodify (reset) all newly-covered blocks

4. Return to step 2

IF (x==3)
foo ()

IF (y==14)
bar () ;

IF (z==58)
bug () ;

27

Appendix -- CGT step-by-step

H 3

.

: ie® INT;

.

Round 01 02 03 100
IF (x==3)
S Test case x=3 x=3 x=3 x=3
o0 () ; values =0 y=14 y=14 y=14
Y z=0 z=0 z=58 z=58

As more blocks unmodified over time,
binary starts to mirror the original

Thus, most testcases are run at
native execution speed!

COMPUTER SCIENCE

VIRGINIA TECH

\7/a

Appendix -- Implementation: UnTracer

\ _
test cases :
\ 4
coverage-
forkserver rd (6 increasin
>1G g
‘ > oracle oracle @ test cases
target binary Instrument Modify Determine
Oracle Oracle Interesting
(with oracle)
basic
—> blocks
Get Blocks
N
tracer
Instrument Tracer
28

updated
oracle

= <=l

Trace Coverage
(with tracer)

Built atop AFL

--

Unmodify
Oracle

Dyninst for CFG/tracing
File 1/0 for mod/unmod

\7/a

COMPUTER SCIENCE

VIRGINIA TECH

