Tap 'n Ghost A Compilation of Novel Attack Techniques against Smartphone Touchscreens

Seita Maruyama¹, Satohiro Wakabayashi¹, Tatsuya Mori^{1, 2} ¹Waseda University, Japan ² RIKEN AIP, Japan

Tap 'n Ghost

> An attack against smartphones

The attack connects a Bluetooth device or a Wi-Fi access point to the victim's smartphone.

- It consists of two techniques:
 - Attack against NFC-enabled smartphones
 - Attack against Capacitive Touchscreens

How Our Attack Works

How Our Attack Works

Demo: Overview

Demo: Overview

Two Attack Techniques

Tag-based Adaptive Ploy: Attack technique against NFC-enabled smartphones

Ghost Touch Generator: Attack technique against **Capacitive Touchscreens**

Two Attack Techniques

Are you sure you want to pair the Bluetooth device? NO YES ure you want to pair the Bluetooth Are you device? YES

Tag-based Adaptive Ploy: Attack technique against NFC-enabled smartphones

Ghost Touch Generator: Attack technique against Capacitive Touchscreens

How Touchscreens Work

Capacitive touchscreens are widely used in smartphones. **TX electrodes** (driving) **Finger RX** electrodes **Smartphone** (sensing)

How Touchscreens Work

Bringing a finger close to the intersection will decrease electrical current flowing into the RX

Ghost Touch Generator

The attacker can cause false touch events by injecting intentional noise from an external source. Cf ТΧ **External Metal Sheet**

Demo: Ghost Touch Generator

Ghost Touch Generator

It causes "false touches" on the 5/7 models.

> The characteristic frequencies vary by model.

Device	Manufacture	Success	Frequency
		false touches	[kHz]
Nexus 7	ASUS	\checkmark	128.2
ARROWS NX F-05F	FUJITSU		—
Nexus 9	HTC	\checkmark	280.9
Galaxy S6 edge	SAMSUNG		—
Galaxy S4	SAMSUNG	\checkmark	384.5
AQUOS ZETA SH-04F	SHARP	\checkmark	202.0
Xperia Z4	SONY	\checkmark	218.0

Summary of Ghost Touch Generator

1. This attack technique scatters false touches on touchscreens.

2. The attacker needs to identify the smartphone model in advance.

Two Attack Techniques

NFC

NFC is a short-range (~10 cm)

wireless communication technology

Smartphones

Smart Posters

pocketnow, https://pocketnow.com/android-nfc-app-reveals-contactless-credit-card-details-should-you-be-worried androidcentral, https://www.androidcentral.com/samsung-pay-uk-everything-you-need-know nfc Direct, https://nfcdirect.co.uk/44-social-media-nfc-smart-posters

NFC and Android

Android smartphones always look for nearby NFC tags and read it.

The following operations are launched depending on the NFC tag record:

- Opening a website
- Connecting a Wi-Fi access point (with confirmation)
- Pairing a Bluetooth device (with confirmation)

Tag-based Adaptive Ploy

NFC emulation enables to emulate an NFC tag, and dynamically change its content.

- 1. Request to open an attacker's website & identify the smartphone model
- 2. Request to pair an attacker's Bluetooth device

Summary of Two Attack Techniques

Tag-based Adaptive Ploy: Attack technique against NFC-enabled smartphones Gets info & Shows dialog box

Ghost Touch Generator: Attack technique against Capacitive Touchscreens Generates false touches

Feasibility of the Threat

- The attack succeeds only if the victim uses their smartphone within the NFC communication range. (NFC communication range < Ghost Touch Generator attack range)</p>
- We conducted a deceptive study to investigate how often the victim's smartphone came within the attack range of the Malicious Table.
 - ➡ 15 out of the 16 participants were attackable.

User Study

Overall Attack Success Rate

Overall attack success rate is 71%, if 30 people take a seat at the Table and

the attacker can retry attack 3 times for each person.

Countermeasures

- Add the user approval processes before Android OS launches every operations recorded in a NFC tag (cf. iPhone XS, XS Max, and XR)
- Detect the malfunction on touchscreens
 - Add idle time to TX electrodes, and check noise on RX electrodes
 - Identify the characteristic patterns of false touches

Responsible Disclosure

With the aid of JPCERT/CC, we have contacted several smartphone manufacturers.

We demonstrated the attack to them and confirmed that the attack is applicable their latest model.

Conclusion

We presented the new attack "Tap 'n Ghost," which exploits the NFC and the touchscreen of the victim's smartphone.

> We demonstrated the attack is feasible.

> We provide possible countermeasures.

Appendix

Tag-based Adaptive Ploy (TAP)

User Study

28

Attack Conditions

Success rate of a single attack: 3%

Following Conditions must be satisfied:

- a smartphone comes with Android OS.
- a smartphone is equipped with NFC.
- a victim has enabled the NFC functionality.
- **a** smartphone's touchscreen controller is attackable with Ghost Touch Generator.
- a victim has unlocked the smartphone

when s/he brings it close to the Malicious Table.

Ghost Touch Generator attack has succeeded.

Overall Attack Success Rate

Overall attack success rate is 71%, if 30 people take a seat at the Table and

the attacker can retry attack 3 times for each person.

30