

Sok: The Challenges, Pitfalls, and Perils of Using Hardware Performance Counters for Security

Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and Fabian Monrose

Hardware Performance Counters

- Available in processors for over two decades
- Monitor and measure hardware events, e.g.:
 - •Instruction retired, cycles
 - Memory accesses
 - Cache hits/misses
 - Translation look-aside buffer hits/misses

- Myriad of applications:
 - Software Profiling
 - Debugging
 - High Performance Computing
 - Power Analysis
- Sharp rise in security domain

•HPCs provide a good **foundation** for measuring **micro-architectural** information (e.g., branch misses, cache misses)

Recent Security Applications

SIGDROP: Signature-based ROP

Detection using Hardware Performance
Counters. Wang et al. [arXiv'16]

On the feasibility of online malware detection with performance counters. Demme et al., SIGARCH, 2013.

Who Watches the Watchmen?: Utilizing Performance Monitors for Compromising Keys of RSA on Intel Platforms, Bhattacharya et al.[CHES'15]

Hardware-Assisted Rootkits: Abusing Performance Counters on the ARM and x86 Architectures. Spisak et al. [WOOT'16]

Recent Security Applications

Detecting Spectre And Meltdown Using Hardware Performance Counters. Pierce, Endgame Inc., Jan. 08, 2018

Detecting Attacks that Exploit Meltdown and Spectre with Performance Counters. Fiser & Gamazo Sanchez, Trend Micro Inc., 2018

Detecting Spectre Attacks by identifying Cache Side-Channel Attacks using Machine Learning. Depoix et al. [WAMOS, 2018]

Impetus of this SoK paper:

Can we use HPCs as a foundation for thwarting Data Only Attacks?

Challenges

- Which events should we measure?
 - There are **HUNDREDS** of HPC events
 - How are the events related to each other?
- Is there a standard way to collect HPC measurements?
- What framework should we use?
 - Collection techniques vary widely

• Non-determinism issue in HPCs

• "Can hardware performance counters be trusted?" Weaver & McKee, Workload Characterization, 2008

- Lack of application-level profiling
 - No process-level filtering of HPC data at the hardware level

• We analyzed nearly 100 papers from different application domains

- Power Analysis
- Performance Analysis
- Security

- We also conducted a survey:
 - Sent questionnaire to authors
 - After repeated attempts, response was 28%

Findings

- We examined 56 papers that acknowledged non-determinism issues from non-security application domains
- Painstakingly evaluated if they recommended using HPCs
 - 45% of the papers did not, because of lack of determinism and portability

Findings

- Of the 40 security papers that used HPCs
 - Only 10% acknowledge nondeterminism issues
 - Acceptance of HPCs in security is in stark contrast to other domains

Can hardware performance counters be trusted?
Weaver & McKee, Workload Characterization, 2008

Common Failures

- Mishandling of performance counter data
 - Lack of process-level filtering
- Ignoring non-determinism issues
 - Skid
 - Over/under-counting of events

Handling of HPC Data

- Limited number of programmable counters
- Configuration
 - done in kernel mode by reading and writing into model specific registers (MSRs)
 - Two modes: Polling vs Sampling

Handling of HPC Data

Event-based sampling using Performance Monitoring Interrupt (PMI)

- 1. Configure events in sampling mode, e.g., N instructions retired
- 2. Program begin execution

3. PMI is generated N instructions

4. At interrupt, read counter values

Mishandling of HPC Data

Filtering of processes at performance monitoring interrupt (PMI)

Non-determinism: Skid

- In sampling mode:
- Late delivery of PMI (due to skid)
 leads to variation in measurements
- Fingerprint of an application may disappear (e.g., Data only attacks)

"Hardware performance monitoring for the rest of us: a position and survey" Moseley et al., Network and Parallel Computing, 2011

Non-determinism: Overcount

 We revisited the non-determinism issues based on the seminal work by Weaver & McKee [IWC, 2008]

 Several problems fixed, but some old issues persist even today

New problem: page faults

Why do these issues matter from a security perspective?

- Improper use of HPC in security applications can be disastrous
 - Incorrect data collection can impact the correctness of an approach
- An adversary can manipulate events (e.g., via page faults) to undermine defenses

Case Study: Malware Classification

- Approach
 - State of the art temporal model by Tang et al. [RAID'14]
 - Sampling using PMI every N instructions retired
 - Events store micro-operations, indirect call, mispredicted return and return instructions

Results

- Incorrect HPC data collection significantly impacts detection accuracy
- Larger question: are HPCs a good foundation for malware detection?
 - "Hardware Performance Counters Can Detect Malware: Myth or Fact?" [Zhou et al., AsiaCCS, 2018]

Case Study: ROP Detection

- Approach
 - State of the art [Wang & Backer, arXiv, 2016]
 - For a given number of return misses, and number of instructions retired
 < = threshold

Case Study: ROP Detection

Results

 Irrespective of parameter choices, non-determinism can be leveraged by an adversary to bypass the ROP detection

Closing remarks

HPCs offer a powerful capability, but like anything else, the devil is in the details

- We need make sure we are *not* **blindly** applying HPCs to security applications, especially defenses, in ways that go beyond their original intent
- See our recommendations on using HPCs

