
CaSym: Cache Aware 
Symbolic Execution for Side 

Channel Detection and 
Mitigation 

Robert	Brotzman,	Shen	Liu,	Danfeng	Zhang,	Gang	Tan,	Mahmut	Kandemir	
Pennsylvania	State	University	



Robert	Brotzman	–	Pennsylvania	State	University	

Cache Side Channels 

•  Side	Channel	
•  Unintentional	information	transfer	

2	

Program	 CPU	Cache	Process	Data	



Robert	Brotzman	–	Pennsylvania	State	University	

Cache Side Channels 

•  Side	Channel	
•  Unintentional	information	transfer	

3	

Program	 CPU	Cache	Process	Data	



Robert	Brotzman	–	Pennsylvania	State	University	

How Severe is the Problem? 

• High	band	width	attack	
• Work	on	secure	enclaves	
• Can	be	launched	across	VM’s	in	the	cloud	

4	

Finding	vulnerabilities	in	code	is	challenging!	
	



Robert	Brotzman	–	Pennsylvania	State	University	

Prior Work 

• CacheAudit	(Doychev	et	al.	Security	‘13)	
•  Uses	abstract	interpretation	
•  Computes	upper	bound	on	leakage	
•  Does	not	provide	location	of	leakage	

• CacheD	(Wang	et	al.	Security	‘17)	
•  Uses	symbolic	execution	
•  Can	detect	where	leakage	happens	
•  May	miss	side	channels	(not	sound)	

•  Requires	concrete	inputs	
•  Does	not	provide	fixes	

5	



Robert	Brotzman	–	Pennsylvania	State	University	

Introducing CaSym 

• Uses	cache-aware	symbolic	execution	
•  Soundly	models	cache	side	channels	

•  Memory	accesses	
•  Branches	

• Detects	cause	of	side	channel	
•  Provides	simple	fix	mechanisms	

•  Flexible	cache	models	
•  Infinite	
•  Age	
•  LRU	

6	



Robert	Brotzman	–	Pennsylvania	State	University	

CaSym: Overview 

7	

Source	
Code	

Model	

LLVM	
IR	Code	

Cache	
Analysis	

Clang	

Cache	Model:	
			Infinite	
			Age	
			LRU	

Attack	Model:	
			Access	
			Trace	

Cache	
Formula	Z3	

Localization		
Report	

Apply	
Mitigations	

Fixed	
Code	



Robert	Brotzman	–	Pennsylvania	State	University	

 1: result = 0; 
 2: for(int i = expLen-1; i > 0; i--) 
 3: { 
 4:  result = result * result; 
 5:  result = result % mod; 
 6:  if((1 << i ) & exp) 
 7:  { 
 8:   result = base * result; 
 9:   result = result % mod; 
 10:  }   
 11: }  	

Example: Square & Multiply 

8	

Localization	Report	
Problem:	Key	Dependent	Branch	
Detected	at:	Line	6	
Witnesses:	…	

	

•  Does	modular	exponentiation	
•  Used	in	asymmetric	encryption	

•  RSA,	ElGamal,	etc	 Iterates	over	
each	bit	of	key		

Key	

Causes	different	
observable	
cache	states	



Robert	Brotzman	–	Pennsylvania	State	University	

Symbolic Execution 
• Program	variables	

•  Treats	all	program	variables	symbolically	

• Cache	variables	
•  Creates	cache	variable	for	each	program	variable	
•  Cache	variables	values	are	determined	by	cache	model	

9	

Toy	Program	
int a,b; 
int PRIV key; 
 
if(key == 1) 
{ 

 a = 0; 
} 
else 
{ 

 b = 0; 
}	

Cache	Variables	
acache	
bcache	
keycache	



Robert	Brotzman	–	Pennsylvania	State	University	

Verification 
• Run	program	twice	
• Cache	and	public	variables	are	same	between	runs	
•  Sensitive	variables	must	be	different	
• Vulnerability	reported	when	two	different	cache	states	are	achieved	

10	

Toy	Program	
int a,b; 
int PRIV key; 
 
if(key == 1) 
{ 

 a = 0; 
} 
else 
{ 

 b = 0; 
}	

Cache	Variables	
acache	
bcache	
keycache	

Toy	Program	
int a’,b’; 
int PRIV key’; 
 
if(key’ == 1) 
{ 

 a’ = 0; 
} 
else 
{ 

 b’ = 0; 
}	

Cache	Variables	
a’cache	
b’cache	
key’cache	

Cache	Variables	
acache	
bcache	
keycache	

Cache	Variables	
a’cache	
b’cache	
key’cache	

=	≠	

≠	=	



Robert	Brotzman	–	Pennsylvania	State	University	

Cache Models 

11	

Infinite	

• Treats	cache	as	an	
infinite	set	

• Never	evicts	data	
from	cache	

Age	

• Assigns	an	age	to	
all	variables	

• Overapproximates	
real	replacement	
policies	

LRU	

• Also	assigns	ages	
to	all	variables	

• Youngest	n	
variables	are	
cached	

Motivation	
•  Cache	implementations	are	complex	
•  Replacement	policies,	hierarchies,	inclusivity,	etc.	

•  Vary	amongst	processors		



Robert	Brotzman	–	Pennsylvania	State	University	

Infinite Model Demo 

12	

Toy	Program	
int a,b; 
int PRIV key; 
 
if(key == 1) 
{ 

 a = 0; 
} 
else 
{ 

 b = 0; 
}	

Used(b)	"	false	

Abstract	
Cache	

Used(a)	"	false	

Used(key)	"	false	

Initial	key	"	1		key	"	1		

Used(key)	"	true	

Used(a)	"	true	

Used(b)	"	true	

Abstract	
Cache	

key	"	0		

Used(key)	"	true	

Used(a)	"	true	

Used(b)	"	false	

≠	



Robert	Brotzman	–	Pennsylvania	State	University	

Age Model Demo 

13	

Toy	Program	
int a,b; 
int PRIV key; 
 
if(key == 1) 
{ 

 a = 0; 
} 
else 
{ 

 b = 0; 
}	

Used(b)	"	∞	

Abstract	
Cache	

Used(a)	"	∞	

Used(key)	"	∞	

Initial	key	"	1		key	"	1		

Used(key)	"	0	

Used(a)	"	0	

Used(b)	"	0	

Abstract	
Cache	

key	"	0		

Used(key)	"	1	

Used(a)	"	0	

Used(b)	"	∞	

≠	

Used(key)	"	1	



Robert	Brotzman	–	Pennsylvania	State	University	

Improving Performance 

• Array	reads	are	unconstrained	
•  Uses	taint	analysis	to	check	if	read	is	
sensitive	

• Reset	constraints	
•  Breaks	program	into	smaller	chunks	
•  Recomputes	sensitive	variables	
•  Useful	for	loops	

•  Loop	transformation	
•  Soundly	rewrite	program	to	be	loop	free	
•  Makes	loop	unrolling	unnecessary	

	
14	



Robert	Brotzman	–	Pennsylvania	State	University	

Attack Models 

15	

Program	
	
access(a);	
access(b);	
access(c);	
access(d);	
access(e);	
access(f);	
	

Access	Model	 Set	of	Addresses:	
	{&a,	&b,	&c,	&d,	

&e,	&f}	



Robert	Brotzman	–	Pennsylvania	State	University	

Attack Models 

16	

Program	
	
access(a);	
access(b);	
access(c);	
access(d);	
access(e);	
access(f);	
	

Trace	Model	 Sequence	of	
Addresses:	

	[&a,	&b,	&c,	&d,	
&e,	&f]	



Robert	Brotzman	–	Pennsylvania	State	University	

Crypto Results: Trace 

17	

Benchmarks	 Found	 Time	 Found	 Time	 Found	 Time	
AES	libgcrypt	 64	 8.9	 64	 16.7	 64	 635	
AES	mbed	TLS	 17	 5.9	 17	 17.0	 17	 757	
3DES		libgcrypt	 128	 62.5	 128	 189	 128	 54.3	
3DES	mbed	TLS	 48	 27.0	 48	 73.2	 48	 803	
DES	glibc	 2	 0.92	 2	 2.65	 2	 9.2	
UFC	glibc	 0	 0.24	 0	 1.27	 0	 5.35	
Square	&	Multiply	
libgcrypt	

4	 8.2	 4	 125	 4	 180	

Square	&	Always	Multiply		
libgcrypt		

3	 18.9	 4	 184	 3	 163	

Left-to-Right	Modular	Exp	
libgcrypt	

3	 84.8	 3	 2618	 3	 6275	

Totals	 269	 217.36	 270	 3226.82	 269	 8881.85	

Infinite	 Age	 LRU	(2k)	

Finds	one	additional	
vulnerable	location	

Order	of	magnitude	
more	time	Most	realistic	model	

Can	take	
significantly	more	

time	

Order	of	accesses	is	
still	different	



Robert	Brotzman	–	Pennsylvania	State	University	

Protected Results 

18	

Functions	 TP	 Time	(s)	 TP	 Time	(s)	 TP	 Time	(s)	 TP	 Time	(s)	
AES	libgcrypt	 0	 2.95	 64	 17.4	 0	 4.02	 0	 13.6	
AES	mbed	TLS	 0	 1.68	 17	 17.4	 0	 2.00	 0	 9.60	
3DES		libgcrypt	 0	 84.0	 128	 170	 0	 0.61	 0	 1.53	
3DES	mbed	TLS	 0	 1.53	 48	 65.5	 0	 0.03	 0	 1.70	
DES	glibc	 0	 0.56	 2	 3.15	 0	 0.51	 0	 1.79	
Totals	 0	 90.72	 259	 273.45	 0	 7.17	 0	 28.22	

Infinite	 Age	 Infinite	 Age	
Preloading	 Pinning	

Data	cached	at	beginning	of	function	 Data	cached	throughout	function	



Robert	Brotzman	–	Pennsylvania	State	University	

Conclusions 

• Built	CaSym	to	automatically	identify	vulnerabilities	in	programs	
• CaSym	supports	a	variety	of	cache	models	

•  Easy	to	get	different	precision	and	efficiency	
•  Tested	on	an	assortment	of	benchmarks	

•  Confirm	many	existing	vulnerabilities	in	crypto	benchmarks	
•  Verified	mitigations	strategies	on	crypto	benchmarks	
•  Found	over	20	new	potential	vulnerabilities	in	the	PostgreSQL	database	

19	



Robert	Brotzman	–	Pennsylvania	State	University	 20	

Thank You! 


