
KHyperLogLog
Estimating Reidentifiability and Joinability

of Large Data at Scale

Pern Hui Chia1, Damien Desfontaines1,2, Irippuge Milinda Perera1,
Daniel Simmons-Marengo1, Chao Li1,

Wei-Yen Day1, Qiushi Wang1, Miguel Guevara1

1 Google, 2 ETH Zurich

Is data reidentifying?

Are data sets joinable?

Problem: Data is LARGE

Background on Approximate Counting

Approximate Counting

● sublinear memory
○ compact data structures (sketches)
○ often bounded size (KBs)

● streaming algorithm
● easily parallelizable
● bounded error rate

 kth smallest hash 264

● Use a uniform hash function
● Hash input values, keep K smallest hashes
● Extrapolate from the density of K smallest hashes

K Min Values [1]

Error rate ~ 1/ sqrt(K)

With K=1024, 64-bit hash: error rate ~3%, size ~8KB

HyperLogLog [2]

● Hash input values ⇒ keep max count of trailing 0’s
● High number of trailing 0’s ⇒ has seen a lot of unique values
● High variance ⇒ average over M counts

Error rate ~ 1/ sqrt(M)

With M=1024, 64-bit hash:

error rate ~3%, size ~1KB

h(fi)

 01110100

 bucket max trailing zero
 0 0

1 0
 2 0
 3 2
 4 0
 5 0
 6 0
 7 0

HyperLogLog++ [3]

● Sparse representation for low cardinalities

⇒ better estimates + less memory

 h(f1)

00011000

0 → 24

 h(f2)

00100010

(sparse) (sparse)

 0 → 24
 1 → 2

 h(f5)

 00110000

bucket max trailing zero
 0 3
 1 4
 2 0
 3 4
 4 0
 5 0
 6 0
 7 0

 h(f3)

 01110100

 bucket max trailing zero
 0 3

1 1
 2 0
 3 2
 4 0
 5 0
 6 0
 7 0

 h(f4)

 01110000

bucket max trailing zero
 0 3
 1 1
 2 0
 3 4
 4 0
 5 0
 6 0
 7 0

(full table) (full table) (full table)

But cardinality estimate is not enough

Introducing KHyperLogLog
to estimate reidentifiability and joinability

KHyperLogLog (KHLL)

Two level counting
● 1st level → K Min Values
● 2nd level → HyperLogLog++HalfByte

Ex: estimate
uniqueness of

User Agent (UA)
strings

Uniqueness Distribution

(UA, ID)

chrome/9.0
mozilla/5.0
.
.
safari/6.1

IDs using
safari/6.1

IDs using
mozilla/5.0

IDs using
chrome/9.0

KMV Sketch

HLL Sketch

HLL Sketch

HLL Sketch

Uniqueness Distribution

From a KHLL sketch, we can estimate

(UA, ID)

chrome/9.0
mozilla/5.0
.
.
safari/6.1

IDs using
safari/6.1

IDs using
mozilla/5.0

IDs using
chrome/9.0

KMV Sketch

HLL Sketch

HLL Sketch

HLL Sketch

Containment & Joinability

chrome/9.0
..
mozilla/5.0
..
safari/6.1

IDs using
safari/6.1

IDs using
mozilla/5.0

IDs using
chrome/9.0

chrome/9.0
opera/8.8

..

..
safari/6.1

IDs using
safari/6.1

IDs using
opera/8.8

IDs using
chrome/9.0

Containment & Joinability

 Containment

 = |A ∩ B| / |A|
Joinability

Given 2 KHLL sketches, we can estimate

chrome/9.0
..
mozilla/5.0
..
safari/6.1

IDs using
safari/6.1

IDs using
mozilla/5.0

IDs using
chrome/9.0

chrome/9.0
opera/8.8

..

..
safari/6.1

IDs using
safari/6.1

IDs using
opera/8.8

IDs using
chrome/9.0

How does KHyperLogLog perform?

Efficiency

● KHLL vs exact counting

○ CPU performance 1 or 2 orders of magnitude faster

○ Bounded memory usage

■ With K=1024, M=512, size ~256KB

○ Scale to large data sets

Accuracy: Uniqueness Distribution

● Prepared test distributions using Netflix & US census data

● Validated accuracy of estimated distributions

Accuracy: Containment

● Sets of equal size: ±5% error 90% of time

● But, problematic for sets of highly unequal sizes

Practical Use of KHLL

● Read data once (petabytes)

● Produce sketches

● Offline

○ Estimate reidentifiability

○ Estimate joinability

Summary

● KHLL for estimating reidentiability & joinability at scale

● Approximation errors possible, but great for

○ Understanding data e.g., for evaluating data strategies

○ Regression testing esp. detecting data joinability

Summary

● KHLL for estimating reidentiability & joinability at scale

● Approximation errors possible, but great for

○ Understanding data e.g., for evaluating data strategies

○ Regression testing esp. detecting data joinability

● Future work

○ Memory efficient but still CPU intensive

○ Applications in privacy enhancing techniques?

Thanks! Questions about KHyperLogLog ?

1. On Synopses for Distinct-Value Estimation Under Multiset Operations.

— K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla.

2. HyperLogLog: the analysis of a near-optimal cardinality estimation

algorithm. — P. Flajolet, E. Fusy, O. Gandouet and F. Meunier.

3. HyperLogLog in Practice: Algorithmic Engineering of a State of The Art

Cardinality Estimation Algorithm. — S. Heule, M. Nunkesser, A. Hall.

References

HLL++half-byte vs HLL++

HLL++

● Compressed sparse list

● Bias correction (between linear and HLL counting)

HLL++half-byte -- readability | cpu efficiency | accuracy

● Sparse list

● Half-byte counters

Half-byte Counters in HLL++

● Observation: counters tend to clump together

● Encoding using 4 bits would allows 2

counters per byte

● Reduce error by 30% given mean

error rate of 1/sqrt(#counters)

bucket max trailing zero
 0 4
 1 8
 2 12
 3 7
 4 5
 5 5
 6 7
 7 6

bucket max trailing zero
 0 0
 1 4
 2 8
 3 3
 4 1
 5 1
 6 3
 7 2

offset 4

