
KHyperLogLog
Estimating Reidentifiability and Joinability

of Large Data at Scale

Pern Hui Chia1, Damien Desfontaines1,2, Irippuge Milinda Perera1, 
Daniel Simmons-Marengo1, Chao Li1, 

Wei-Yen Day1, Qiushi Wang1, Miguel Guevara1

1 Google, 2 ETH Zurich



Is data reidentifying?

Are data sets joinable?



Problem: Data is LARGE





Background on Approximate Counting



Approximate Counting

● sublinear memory 
○ compact data structures (sketches)
○ often bounded size (KBs)

● streaming algorithm 
● easily parallelizable
● bounded error rate



   kth smallest hash 264

● Use a uniform hash function
● Hash input values, keep K smallest hashes
● Extrapolate from the density of K smallest hashes

K Min Values [1]

Error rate ~ 1/ sqrt(K) 

With K=1024, 64-bit hash: error rate ~3%, size ~8KB



HyperLogLog [2]

● Hash input values ⇒ keep max count of trailing 0’s
● High number of trailing 0’s ⇒ has seen a lot of unique values
● High variance ⇒ average over M counts

Error rate ~ 1/ sqrt(M) 

With M=1024, 64-bit hash: 

error rate ~3%, size ~1KB

h(fi)

          01110100

     bucket max trailing  zero
   0         0

1         0
   2         0
   3         2
   4         0
   5         0
   6         0
   7         0



HyperLogLog++ [3]

● Sparse representation for low cardinalities

⇒ better estimates + less memory

 h(f1)

00011000

0 → 24

 h(f2)

00100010

(sparse) (sparse)

  0 → 24
     1 → 2

           h(f5)

       00110000

bucket max trailing  zero
        0         3
        1         4
        2         0
        3         4
        4         0
        5         0
        6         0
        7         0

              h(f3)

          01110100

     bucket max trailing  zero
   0         3

1         1
   2         0
   3         2
   4         0
   5         0
   6         0
   7         0

         h(f4)

     01110000

bucket max trailing  zero
        0         3
        1         1
        2         0
        3         4
        4         0
        5         0
        6         0
        7         0

(full table) (full table) (full table)



But cardinality estimate is not enough



Introducing KHyperLogLog
to estimate reidentifiability and joinability



KHyperLogLog (KHLL)

Two level counting 
● 1st level → K Min Values
● 2nd level → HyperLogLog++HalfByte

Ex: estimate 
uniqueness of 

User Agent (UA) 
strings



Uniqueness Distribution 

(UA, ID) 

chrome/9.0
mozilla/5.0
.
.
safari/6.1

IDs using 
safari/6.1

IDs using 
mozilla/5.0

IDs using 
chrome/9.0

KMV Sketch

HLL Sketch

HLL Sketch

HLL Sketch



Uniqueness Distribution 

From a KHLL sketch, we can estimate

(UA, ID) 

chrome/9.0
mozilla/5.0
.
.
safari/6.1

IDs using 
safari/6.1

IDs using 
mozilla/5.0

IDs using 
chrome/9.0

KMV Sketch

HLL Sketch

HLL Sketch

HLL Sketch



Containment & Joinability

chrome/9.0
..
mozilla/5.0
..
safari/6.1

IDs using 
safari/6.1

IDs using 
mozilla/5.0

IDs using 
chrome/9.0

chrome/9.0
opera/8.8

..

..
safari/6.1

IDs using 
safari/6.1

IDs using 
opera/8.8

IDs using 
chrome/9.0



Containment & Joinability

  Containment 

  = |A ∩ B| / |A|
Joinability

Given 2 KHLL sketches, we can estimate

chrome/9.0
..
mozilla/5.0
..
safari/6.1

IDs using 
safari/6.1

IDs using 
mozilla/5.0

IDs using 
chrome/9.0

chrome/9.0
opera/8.8

..

..
safari/6.1

IDs using 
safari/6.1

IDs using 
opera/8.8

IDs using 
chrome/9.0



How does KHyperLogLog perform?



Efficiency

● KHLL vs exact counting

○ CPU performance 1 or 2 orders of magnitude faster

○ Bounded memory usage

■ With K=1024, M=512, size ~256KB

○ Scale to large data sets



Accuracy: Uniqueness Distribution

● Prepared test distributions using Netflix & US census data

● Validated accuracy of estimated distributions



Accuracy: Containment

● Sets of equal size: ±5% error 90% of time

● But, problematic for sets of highly unequal sizes



Practical Use of KHLL

● Read data once (petabytes)

● Produce sketches

● Offline

○ Estimate reidentifiability 

○ Estimate joinability



Summary

● KHLL for estimating reidentiability & joinability at scale

● Approximation errors possible, but great for

○ Understanding data e.g., for evaluating data strategies

○ Regression testing esp. detecting data joinability 



Summary

● KHLL for estimating reidentiability & joinability at scale

● Approximation errors possible, but great for

○ Understanding data e.g., for evaluating data strategies

○ Regression testing esp. detecting data joinability 

● Future work

○ Memory efficient but still CPU intensive

○ Applications in privacy enhancing techniques? 



Thanks! Questions about KHyperLogLog ?
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HLL++half-byte vs  HLL++

HLL++

● Compressed sparse list

● Bias correction (between linear and HLL counting)

HLL++half-byte  --  readability | cpu efficiency | accuracy 

● Sparse list 

● Half-byte counters



Half-byte Counters in HLL++ 

● Observation: counters tend to clump together

● Encoding using 4 bits would allows 2 

counters per byte

● Reduce error by 30% given mean 

error rate of 1/sqrt(#counters)

bucket max trailing zero
   0         4
   1         8
   2         12
   3         7
   4         5
   5         5
   6         7
   7         6

bucket max trailing zero
   0         0
   1         4
   2         8
   3         3
   4         1
   5         1
   6         3
   7         2

offset 4


