Spectre Attacks:
Exploiting Speculative Execution

|IEEE Security & Privacy (May 20, 2019)

Paul Kocher', Jann Horn?, Anders Fogh3, Daniel Genkin#, Daniel Gruss>®,
Werner Haas®, Mike Hamburg’, Mortiz Lipp°, Stefan Mangard®,
Thomas Prescher®, Michael Schwartz®, Yuval Yarom?

T Independent, 2 Google Project Zero, 3 G DATA Advanced Analytics, 4 University of Pennsylvania and University of
Maryland,

5 Graz University of Technology, ¢ Cyberus Technology, “ Rambus, Cryptography Research Division, & University of
Adelaide & Data61



‘ e
£

5

E

£

E

How to boost CPU performance

No more easy gains from low-level physics, e.g.:
» Increase clock rates Mostly maxed out (3.8 GHz Pentium 4 in 2004)

» Improve memory speeds DRAM latency huge, not improving much

Industry focus on pipelining + boosting average-case performance, e.g.:
» Reducing memory delays — Caches

» Working during delays — Speculative execution

Computer architecture: n. The art and science of
iIntroducing new side channel vulnerabillities.




Speculative execution

Programs are expressed sequentially
... but fast CPUs leverage HW’s parallelism (pipelining...) and speculation

Speculation: Start likely tasks early, then clean up errors.

Example:
if (x == 1) { If x is uncached, processor faces a long delay
abc... CPU can guess execution path & proceed speculatively
b else { When x arrives from DRAM, check if guess was correct
XVZ... : . .
} Y » Correct: commit speculative work = performance gain

» Wrong guess: Discard faulty work



Fault attacks

Correct program Induce error(s)

Secure programs are A A
unsafe if executed B B
erroneously

C C < Executed

rogram

Example: Induce analog D D ipsdigfferent
glitches on clock, reset, E E

power/ground...

Almost any kind of error is exploitable



Are there any security implications from
speculative execution? - Mike Hamburg

CPU is secretly making errors on its own

~ fault attack hardware is built-in

Faulty results are discarded, but CPUs are riddled with side/covert channels
(... much simpler than combined fault+differential power analysis)




Conditional branch (Variant 1) attack

Memory & Cache Status
arrayl size = 00000008

1f (x < arrayl size)
y = arrayzlarrayl[x]*512];

Memory at arrayl base address:

Attack scenario: 8 bytes of data (value doesn’t matter)
» Code runs in a trusted context [... lots of memory up to arrayl base+N...]
» Adversary wants to read memory and controls unsigned 09 F1 98 CC 90... (something secret)
Integer x array2[ 0*512
» Branch predictor will expect 1 £ () to be true array2[ 1*512
(e.g. because prior calls had x < arrayl size) array2[ 2*512
: . array2[ 3*512
» arrayl sizeandarray2[] arenotin cache array2| 4%512
array2|[ 5*512
array?2

— — o /1

]
]
]
]
]
]
65121 ( Contents don’t matter
]
]
]
]
]

array2[ 7*512 only care about cache status
acayZ[ €5l Uncached  Cached
array2[ 9*512

array2[10*512

array2[11*512




Conditional branch (Variant 1) attack

if (x < arrayl size) Memory & Cache Status

y = array2 [arrayl [x]1*5127; arrayl size = 00000008

Memory at arrayl base address:

Attacker calls victim code with x=N (where N > 8) 8 bytes of data (value doesn’t matter)

» Speculative exec while waiting for arrayl size [... lots of memory up to arrayl base+N...]
» Predict that if() is true 09 F1 98 CC 90... (something secret)
» Read address (arrayl base + x) w/ out-of-bounds x array2[ 0*512
» Read returns secret byte = 09 (fast —in cache) arrayz2[ 1*512
array2|[ 2*512
array2[ 3*512
array2|[ 4*512
array2[ 5*512
array?2

— — o /1

]
]
]
]
]
]
65121 ( Contents don’t matter
]
]
]
]
]

array2[ 7*512 only care about cache status
acayZ[ €5l Uncached  Cached
array2[ 9*512

array2[10*512

array2[11*512




Conditional branch (Variant 1) attack

1f (x < arrayl size)
y = arrayzlarrayl[x]*512];

Attacker calls victim code with x=N (where N > 8)

» Speculative exec while waiting for arrayl size
» Predict that if() is true
» Read address (arrayl base + x) w/ out-of-bounds x
» Read returns secret byte = 09 (fast —in cache)
» Request memory at (array2 base + 09*512)
» Brings array2[09*512] into the cache
» Realize if() is false: discard speculative work

» Finish operation & return to caller

Attacker times reads from array2 [1*512]
» Read for 1=09 is fast (cached), revealing secret byte

Memory & Cache Status
arrayl size = 00000008

Memory at arrayl base address:

8 bytes of data (value doesn’t matter)
[... lots of memory up to arrayl base+N...]

09 F1 98 CC 90... (something secret)
N
arrayz2[ 0*512
array2[ 1*512
array2|[ 2*512
array2[ 3*512
array2|[ 4*512

array?2

array2[ 7*512 only care about cache status
Enelyed P Uncached  Cached
array2|[ 9*512

array2[10*512

[ ]
[ ]
[ ]
[ ]
[ ]
array2[ 5*512]
[ 6x512] ( Contents don’t matter
[ ]
[ ]
[ ]
[ ]
[ ]

array2[11*512



Spectre is a messy class of vulnerabilities

Many possible variations

\
Speculation scenario
(= computation error)

+

“Safe” computation that
speculation turns unsafe

+

Induce computation
with desired error

—>

J

Side channel

|

Detect & analyze
leaked data

Many related results

» Speculative Store Bypass/Variant 4
* NetSpectre

* Foreshadow

* Spectrel.l

* Spectre-NG

* Rogue System Register Read

* Speculative Store Bypass (SSB)
e LazyFP (Lazy FPU state leak)

* ret2spec

* SpectreRSB

+ more to come




Is Spectre a bug?

Everything complies with the architecture specs

» Branch predictor is learning from history, as expected
» Speculative execution unwinds architectural state correctly

» Reads are fetching data the victim is allowed to read

» Caches are allowed to hold state

» Covert channels & side channels are well known




Spectre is a symptom

dl gl

Symptom of excessive architectural ambiguity :gﬂiﬁi
» Typical architectures’ guarantees are insufficient for security ﬁi!! a;

E.g. no promise to keep anything secret from other processes? Across intra-process domains? %g gg

» Consequence: software developers to rely on guesses gi §%

Hopeless for developer: even if tested on all chips today, future chips may be different

» Key research topic: What should architectures guarantee? | step 1: Tell programmers to add
LFENCE instructions wherever

s : _ something could go wrong (and
Metric: likelihood final system (HW+SW) will be secure anliEmE eles heesuse | EENCE s

... given realistic assumptions about SW+HW development practices really slow)

Minimum requirement: Sufficient for secure software

Challenges: performance, power, legacy compatibility, die area...

Step n: Blame programmer




Spectre is a symptom

History of prioritizing performance, legacy compatibility, ... over security
» Scaling issue: As complexity grows, security risks increase faster than benefits
» Balance has shifted for many applications: value of performance gains << insecurity costs

» Latency in changing mindsets: Dominant people and businesses grew up when performance > security

Need to specialize designs for performance vs. security

» Can co-exist on the same chip
(analogous to ARM’s big.LITTLE for power)

» Security = much less complex TCB (HW+SW),
not just a different mode (like TrustZone/SGX)




Q&A

If the surgery proves unnecessary, we’ll
revert your architectural state at no charge.




