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Contributions 
• New	Algorithm	for	Differentially	Private	Convex	Optimization:		
Approximate	Minima	Perturbation	(AMP)	
• Can	leverage	any	off-the-shelf	optimizer	
• Works	for	all	convex	loss	functions	
• Has	a	competitive	hyperparameter-free	variant	

• Broad	Empirical	Study	
• 6	state-of-the-art	techniques	
• 2	models:	Logistic	Regression,	and	Huber	SVM	
• 13	datasets:	9	public	(4	high-dimensional),	4	real-world	use	cases	
• Open-source	repo:	https://github.com/sunblaze-ucb/dpml-benchmark	



This Talk 
• Why	Privacy	for	Learning?	
• Background	
• Differential	Privacy	(DP)	
• Convex	Optimization	

• Approximate	Minima	Perturbation	(AMP)	
• Broad	Empirical	Study		



Why Privacy for Learning? 
Sensitive	Data	𝐷  

Training	Algorithm	𝐴		
Trained	
Model	 ​𝜃 	Input	 Output	

• Models	can	leak	information	about	training	data	
• Membership	inference	attacks	[Shokri	Stronati	Song	Shmatikov’17,	Carlini	Liu	Kos	Erlingsson	Song’18,		

	 	 	 																	Melis	Song	Cristofaro	Shmatikov’18]	
• Model	inversion	attacks	[Fredrikson	Jha	Ristenpart’15,	Wu	Fredrikson	Jha	Naughton’16]	
	

• Solution?	
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𝐏𝐫(𝑨(𝑫′)= ​𝜽 )	
​𝐷↑′ :	

Differential Privacy [Dwork Mcsherry Nissim Smith ‘06] 
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Differential Privacy [Dwork Mcsherry Nissim Smith 
‘06] 
• Privacy	parameters:	(𝜀,𝛿)	
• A	randomized	algorithm	𝐴:​𝒟↑𝑛 →𝑇	is	(𝜀,𝛿)-DP	if		
• for	all	neighboring	datasets	𝐷, ​𝐷↑′ ∈ ​𝒟↑𝑛 ,	i.e.,	𝑑𝑖𝑠𝑡(𝐷, ​𝐷↑′ )=1	
• for	all	sets	of	outcomes	𝑆⊆Θ,	we	have	
	

​Pr�(𝐴(𝐷)∈𝑆) ≤ ​𝑒↑𝜀 ​Pr�(𝐴(​𝐷↑′ )∈𝑆) + 𝛿	

𝜀:	Multiplicative	change.	
Typically,	𝜀=𝑂(1)	

𝛿:	Additive	change.	
Typically,	𝛿=𝑂(1/ ​𝑛↑2 )	



Convex Optimization 
• Input:		

• Dataset	𝐷∈ ​𝒟↑𝑛 	
• Loss	function	𝐿(𝜃,𝐷),	where	

• 𝜃∈ ​ℝ↑𝑝 	is	a	model	
• Loss	𝐿	is	convex	in	the	first	parameter	𝜃	

• Goal:	Output	model	​𝜃 	such	that	
	 	 	 ​𝜃 ∈ ​​min┬𝜃∈ ​ℝ↑𝑝  �𝐿(𝜃,𝐷) 	

• Applications:	
• Machine	Learning,	Deep	Learning,	Collaborative	Filtering,	etc.	 ​𝜃 	

𝐿(
𝜃,
𝐷
)	

𝜃	



DP Convex Optimization - Prior Work 
Sensitive	Data	𝐷  

Training	Algorithm	𝐴		 Trained	
Model	 ​𝜃 	Input	 Output	

Objective		
Perturbation	
[Chaudhuri	Monteleoni	
Sarwate’11,	Kifer	Smith	

Thakurta’12,	Jain	
Thakurta’14]	

DP	GD/SGD	
[Song	Chaudhuri	

Sarwate’13,	Bassily	Smith	
Thakurta’14,	Abadi	Chu	
Goodfellow	McMahan	

Mironov	Talwar	Zhang’16]	

DP	Frank	
Wolfe	

[Talwar	Thakurta	
Zhang’14]	

Output	
Perturbation	
[CMS’11,	KST’12,	JT’14]	

DP	
Permutation
-based	SGD	
[Wu	Li	Kumar	Chaudhuri	

Jha	Naughton	’17]	

-	Requires	minima	of	loss	
-	Requires	custom	optimizer	



• Input:	
• Dataset	𝐷,	Loss	function:	𝐿(𝜃,𝐷)	
• Privacy	parameters:	𝑏=(𝜖, 𝛿)	
• Gradient	norm	bound	𝛾	

• Algorithm	(high-level):	
1.  Split	privacy	budget	into	2	parts	​𝑏↓1 	and	 ​𝑏↓2 	
2.  Perturb	loss:	 ​𝐿↓𝑝𝑟𝑖𝑣 (𝜃,𝐷)=𝐿(𝜃,𝐷)+𝑅𝑒𝑔(𝜃, ​𝑏↓1 )	

​𝐿↓
𝑝𝑟
𝑖𝑣
 (𝜃

,𝐷
)	

𝐿(
𝜃,
𝐷
)	

Approximate Minima Perturbation 
(AMP) 

𝜃	​𝜃↓𝑝𝑟𝑖𝑣 	​𝜃 	Similar	to	standard	Objective	Perturbation	
[KST’12]	



• Input:	
• Dataset	𝐷,	Loss	function:	𝐿(𝜃,𝐷)	
• Privacy	parameters:	𝑏=(𝜖, 𝛿)	
• Gradient	norm	bound	𝛾	

• Algorithm	(high-level):	
1.  Split	privacy	budget	into	2	parts	​𝑏↓1 	and	 ​𝑏↓2 	
2.  Perturb	loss:	 ​𝐿↓𝑝𝑟𝑖𝑣 (𝜃,𝐷)=𝐿(𝜃,𝐷)+𝑅𝑒𝑔(𝜃, ​𝑏↓1 )	
3.  Let	 ​𝜃↓𝑎𝑝𝑝𝑟𝑜𝑥 =𝜃	s.t.	 ​‖∇​𝐿↓𝑝𝑟𝑖𝑣 (𝜃,𝐷)‖↓2 ≤𝛾		
4.  Output	​𝜃↓𝑎𝑝𝑝𝑟𝑜𝑥 +𝑁𝑜𝑖𝑠𝑒(​𝑏↓2 ,𝛾)	

​𝐿↓
𝑝𝑟
𝑖𝑣
 (𝜃

,𝐷
)	

Approximate Minima Perturbation 
(AMP) 

𝜃	​𝜃↓𝑝𝑟𝑖𝑣 	

​‖∇​𝐿↓𝑝𝑟𝑖𝑣 (𝜃,𝐷)‖↓2 
≤𝛾		

​𝜃↓𝑎𝑝𝑝𝑟𝑜𝑥 	

Similar	to	standard	Objective	Perturbation	
[KST’12]	



Utility guarantees 
• Let	 ​𝜃 	minimize	𝐿(𝜃;𝐷),	and	the	regularization	parameter	Λ= ​Θ (​𝜉√�𝑝 /𝜖𝑛‖​𝜃 
‖ ).	

• Objective	Perturbation	[KST’12]:	If	​𝜃↓𝑝𝑟𝑖𝑣 	is	the	output	of	obj.	pert.:

𝔼(𝐿(​𝜃↓𝑝𝑟𝑖𝑣 ;𝐷)−𝐿(​𝜃 ;𝐷))= ​𝑂 (​𝜉√�𝑝 ‖​𝜃 ‖/𝜖𝑛 ).	
• AMP	(adapted	from	[KST’12]):	For	output	 ​𝜃↓𝐴𝑀𝑃 :	

	 				𝔼(𝐿(​𝜃↓𝐴𝑀𝑃 ;𝐷)−𝐿(​𝜃 ;𝐷))= ​𝑂 (​𝜉√�𝑝 ‖​𝜃 ‖/𝜖𝑛 +‖​𝜃 ‖𝛾𝑛).	
• For	𝛾=𝑂(​1/​𝑛↑2  ),	the	utility	of	AMP	is	asymptotically	the	same	as	that	of	Obj.	Pert.	

• Private	PSGD	[WL​K↑+ 17]:	For	output	​𝜃↓𝑃𝑆𝐺𝐷 ,	and	model	space	radius	𝑅:	
𝔼(𝐿(​𝜃↓𝑃𝑆𝐺𝐷 ;𝐷)−𝐿(​𝜃 ;𝐷))= ​𝑂 (​𝜉√�𝑝  𝑅/𝜖√�𝑛  ).		

• For	𝛾=𝑂(​1/​𝑛↑2  ),	the	utility	of	AMP	has	a	better	dependence	on	𝑛	than	Private	PSGD.		than	Private	PSGD.	



AMP - Takeaways 
• Can	leverage	any	off-the-shelf	optimizer	
• Works	for	all	standard	convex	loss	functions	
• For	𝛾=𝑂(​1/​𝑛↑2  ),	the	utility	of	AMP:	

•  is	asymptotically	the	same	as	Objective	Perturbation	[KST’12]	
• has	a	better	dependence	on	𝑛	than	Private	PSGD	[WL​K↑+ 17]	

• 𝛾= ​1/​𝑛↑2  	achievable	using	standard	Python	libraries	



Empirical Evaluation 
• Algorithms	evaluated:	

• Approximate	Minima	Perturbation	(AMP)		
• Private	SGD	[​BST↑′ 14, ​ACG↑+ 17]	

• Private	Frank-Wolfe	(FW)	[​TTZ↑′ 14]	

• Private	Permutation-based	SGD	(PSGD)	[WL​K↑+ 17]	

• Private	Strongly-convex	(SC)	PSGD	[WL​K↑+ 17]	

• Hyperparameter-free	(HF)	AMP	
• Splitting	the	privacy	budget:	We	provide	
a	schedule	for	low-	and	high-dim.	data	
by	evaluating	AMP	only	on	synthetic	data	

• Non-private	(NP)	Baseline	



Empirical Evaluation 
• Loss	functions	considered:	

• Logistic	loss	
• Huber	SVM	

• Procedure:	
• 80/20	train/test	random	split	
• Fix	𝛿= ​1/​𝑛↑2  ,	and	vary	𝜖	from	0.01	to	10	
• Measure	accuracy	of	final	tuned*	private	model	over	test	set	
• Report	the	mean	accuracy	and	std.	dev.	over	10	independent	runs	

This	talk	

*Does	not	apply	to	Hyperparameter-free	
AMP.	



Synthetic Datasets 
Synthetic-L	(10k ×20)	

Legend	
NP	Baseline	

AMP	

HF	AMP	

Private	SGD	

Private	PSGD	

Private	SC	PSGD	

Private	FW	

-  Synthetic-H	is	high-dimensional,	but	low-rank	
-  Private	Frank-Wolfe	performs	the	best	on	Synthetic-H	

Synthetic-H	(2k ×2k)	



High-dimensional Datasets 
Real-sim	(72k×21k)	

Legend	
NP	Baseline	

AMP	

HF	AMP	

Private	SGD	

Private	PSGD	

Private	SC	PSGD	

Private	FW	

-  Both	variants	of	AMP	almost	always	provide	the	best	performance	

RCV-1	(50k	×47k)	



Real-world Use Cases (Uber) 
Dataset	1	(4m×23)	

Legend	
NP	Baseline	

AMP	

HF	AMP	

Private	SGD	

Private	PSGD	

Private	SC	PSGD	

Private	FW	

-  DP	as	a	regularizer	[BST’14,	Dwork	Feldman	Hardt	Pitassi	Reingold	Roth	’15]	
-  Even	for	𝜖= ​10↑−2 ,	accuracy	of	AMP	is	close	to	non-private	baseline	

Dataset	2	(18m×294)	



Conclusions 
• For	large	datasets,	cost	of	privacy	is	low	

• Private	model	is	within	4%	accuracy	of	the	non-private	one	for	𝜖=0.01,		
and	within	2%	for	𝜖=0.1	

• AMP	almost	always	provides	the	best	accuracy,		
and	is	easily	deployable	in	practice	

• Hyperparameter-free	AMP	is	competitive		
w.r.t.	tuned	state-of-the-art	private	algorithms	

• Open-source	repo:	https://github.com/sunblaze-ucb/dpml-benchmark	

Thank	
You!	


