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Contributions

*New Algorithm for Differentially Private Convex Optimization:
Approximate Minima Perturbation (AMP)
* Can leverage any off-the-shelf optimizer
* Works for all convex loss functions

* Has a competitive hyperparameter-free variant

* Broad Empirical Study
* 6 state-of-the-art techniques

* 2 models: Logistic Regression, and Huber SVM
* 13 datasets: 9 public (4 high-dimensional), 4 real-world use cases
* Open-source repo: https://github.com/sunblaze-ucb/dpml-benchmark




This Talk

*Why Privacy for Learning?
*Background
*Differential Privacy (DP)
*Convex Optimization
* Approximate Minima Perturbation (AMP)
*Broad Empirical Study



Why Privacy for Learning?
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* Models can leak information about training data

* Membership inference attacks [shokri Stronati Song Shmatikov’17, Carlini Liu Kos Erlingsson Song’18,
Melis Song Cristofaro Shmatikov’18]

* Model inversion attacks [Fredrikson Jha Ristenpart’15, Wu Fredrikson Jha Naughton’16]

* Solution?




Differential Privacy [Dwork Mcsherry Nissim Smith ‘06]
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Differential Privacy [Dwork Mcsherry Nissim Smith ‘06]
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Differential PrivaCy [Dwork Mcsherry Nissim Smith
06]

* Privacy parameters: (&,0)

* A randomized algorithm A:DTn - 7is (£0)-DP if
*for all neighboring datasets 2,07 €D7n, i.e., dist(D,PT )=1
*for all sets of outcomes S<0, we have

PrO(A(D)ES) <elcPrO(A(DT )ES) + &

. Multiplicative change. o. Additive change.
Typically, =01) Typically, s=001/n12 )




Convex Optimization

° lnput:
* Dataset V€D Tn
* Loss function Z(6,0), where

* /ERTp is a model
* Loss Z is convex in the first parameter ¢

L(6,D)

* Goal: Output model & such that
demin—feR Ty OL(6,D)

* Applications:
* Machine Learning, Deep Learning, Collaborative Filtering, etc. 4



DP Convex Optimization - Prior Work
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Objective DP GD/SGD DP Frank DP
Perturbation  [wivwwit  IREVYIER Juput mermutation
o el ETMOWRY  Perturbation - _hased SGD

Goodfellow McMahan [CMS’11, KST'12, JT'14]

Zhang’'14] [Wu Li Kumar Chaudhuri
Jha Naughton '17]

Thakurta’12, Jain
Thakurta’14]

Mironov Talwar Zhang’16]

B - Requires minima of loss
B - Requires custom optimizer




ApPpproximate iinima rerwiurbation
(AMP)

° lnput:
* Dataset 2, Loss function: £2(6,0)
* Privacy parameters: /=(¢, 9)
* Gradient norm bound »

Liprigd@p)

* Algorithm (high-level):
1. Split privacy budget into 2 parts 441 and 442
(—2. Perturb loss: Zpriv (6,D)=L(6,D)+Reg(6,hi1)

\ Similar to standard Objective Perturbation

[KST’12]




ApPpproximate iinima rerwiurbation
(AMP)

° lnput:
* Dataset 2, Loss function: £2(6,0)
* Privacy parameters: /=(¢, 9)
* Gradient norm bound »
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Lipriv (6,D)

* Algorithm (high-level):

1. Split privacy budget into 2 parts 441 and 442
(—2. Perturb loss: Zpriv (6,D)=L(6,D)+Reg(6,hi1)
3. Let lapprox=0@s.t. [VLIpriv (6,D)[[I2 <y

4. Output Alapprox +Noise(bi2 ,y)

dlapprox
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\ Similar to standard Objective Perturbation :
[KST'12] 5’lp7‘lV 4




Utility guarantees

* Let & minimize Z(8;2), and the regularization parameter A=0 (&vVOp /en/|6
II)-

* Objective Perturbation sri2): If &4priv is the output of obj. pert.:
E(L(Gpriv;D)—L(6;0)=0 (§VOp ||8 || /en ).
* AMP (adapted from ksr12): For output &LAMP :

E(L(GIAMP;D)—L(6;0))=0 (&VOp ||8 [|/en+]|8 [[yn).
* For y=0(1/nT2 ), the utility of AMP is asymptotically the same as that of Obj. Pert.

* Private PSGD (WLK 7+ 17;: For output &LLSGD , and model space radius £

E(L(OLPSCD;D)—L(8:;D))=0 (&VOp R/evn ).
* For y=0(1/nT2 ), the utility of AMP has a better dependence on 7 than Private PSGD.



AMP - Takeaways

* Can leverage any off-the-shelf optimizer

||VLpriv(8; D)HZ <Yy

N

* Works for all standard convex loss functions

*For y=0(1/nT2 ), the utility of AMP:
* is asymptotically the same as Objective Perturbation [ksT12]-3"
* has a better dependence on 72 than Private PSGD (WLK 7+ 17,
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*y=1/nT2 achievable using standard Python libraries

Happrox
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Empirical Evaluation

° Algorith ms evaluated: DATASETS USED IN OUR EVALUATION
* Approximate Minima Perturbation (AMP) Dataset # Samples # Dim. # Classes
. Low-Dimensional Datasets (Public)
Private SGD [BST 7" 14,ACGT+ 17, SyatheticT] 10,000 50 5
o Dri ) Adult 45,220 104 2
Private Frank-Wolfe (FW) (TTZT 14, KDDCup99 70,000 114 5
* Private Permutation-based SGD (PSGD) (WLK7 Covertype 581,012 54 7
, MNIST 65,000 784 10
* Private Strongly—convex (SC) PSGD [WLKf 17 High-Dimensional Datasets (Public)
e Hyperparameter-free (HF) AMP Synthetic-H| 2,000 2,000 2
yp? Pa . et? ee (HF) . Gisette 6,000 5,000 2
* Splitting the privacy budget: We provide Real-sim 72.309 20,958 2
a schedule for low- and high-dim. data RCVI 50,000 47,236 2
by evaluating AMP only on synthetic data Real-World Datasets (Uber)
) ] Dataset #1 4m 23 2
* Non-private (NP) Baseline Dataset #2 18m 294 2
Dataset #3 18m 20 2
Dataset #4 19m 70 2




Empirical Evaluation

* Loss functions considered:

-|Logistic loss]| This talk
* Huber SVM

* Procedure:
* 80/20 train/test random split
* Fix 0=1/nT2 , and vary efrom 0.01 to 10
* Measure accuracy of final tuned™ private model over test set
* Report the mean accuracy and std. dev. over 10 independent runs

*Does not apply to Hyperparameter-free
AMP.




Synthetic Datasets

O
o

Accuracy (%)

o)}
o

(00]
o

~
o

Synthetic-L (10k x20)

M = e
102 100! 100 10!
Epsilon

Accuracy (%)

(o)}
o

O
o

o0
o

~
o

Ul
o

Synthetic-H (2k x2k)

107! 100
Epsilon

Synthetic-H is high-dimensional, but low-rank
Private Frank-Wolfe performs the best on Synthetic-H
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High-dimensional Datasets

Real-sim (72kx21k) RCV-1 (50k x47k)
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- Both variants of AMP almost always provide the best performance




Real-world Use Cases (Uber)
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DP as a regularizer [BST’14, Dwork Feldman Hardt Pitassi Reingold Roth "15]
Even for e=107-2, accuracy of AMP is close to non-private baseline
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Conclusions

* For large datasets, cost of privacy is low

* Private model is within 4% accuracy of the non-private one for ¢=0.01,
and within 2% for ¢=0.1 V@D, <7

! -

iv(Q;D)

* AMP almost always provides the best accuracy,
and is easily deployable in practice

Ly

* Hyperparameter-free AMP is competitive
w.r.t. tuned state-of-the-art private algorithms

* Open-source repo: https://github.com/sunblaze-ucb/dpml-benchmark
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