SoK: Shining Light on
Shadow Stacks

Nathan Burow, Xinping Zhang, Mathias Payer

PURDUE

UNIVERSIT Yo

=PL

Control-Flow Hijacking (CFH)

* Microsoft: 70% of bugs are memory corruptions

e Control and Data Planes are interleaved

* Memory corruption = Control-Flow Hijacking

Data

Code Pointer

Control-Flow Hijacking (CFH)

* Microsoft: 70% of bugs are memory corruptions

e Control and Data Planes are interleaved

* Memory corruption = Control-Flow Hijacking

Data

Code Pointer

Forward Edge

* Function pointers; virtual calls

* Control-Flow Integrity (CFl) - statically calculates target sets

Forward Edge

* Function pointers; virtual calls

* Control-Flow Integrity (CFl) - statically calculates target sets

fptr() >

Forward Edge

* Function pointers; virtual calls

* Control-Flow Integrity (CFl) - statically calculates target sets

fptr() >

Backward Edge

* Return Instructions
* Does CFl style analysis work?

Backward Edge

* Return Instructions
* Does CFl style analysis work?

ret

Backward Edge

* Return Instructions
* Does CFl style analysis work?

NO

Backward Edge

* CFl style target sets include every call site for the function

* Target sets are too large to provide meaningful protection

Security requires integrity for return addresses!

10

CFH Mitigation Today

* Seminal CFl paper by Abadi et. al. called for shadow stack
e See Burow et al CSUR 2017[1]

* Deployed versions by Microsoft / Google only cover forward edge

No equally strong defense for backward edge!

[1] Burow et. al. “Control-flow integrity: Precision, security, and performance.” CSUR 2017.
11

Shadow Stacks

* Separate return addresses from data plane
* Provide integrity protection for return addresses

* Performant and highly compatible

Need to deploy Shadow Stack with CFI!

12

Control-Flow Hijacking lllustrated

Program Stack

Return Address

Stack Canary

D

Pointer -

/

Array 7

Control-Flow Hijacking lllustrated

Program Stack

Return Address

Stack Canary

D

Pointer -

/

Array 7

Control-Flow Hijacking lllustrated

Program Stack

Return Address

Stack Canary

D

Pointer -

/

Array 7

Control-Flow Hijacking lllustrated

Program Stack

Return Address

Stack Canary

D

Pointer -

/

Array 7

[

Control-Flow Hijacking lllustrated

Pointer -

[/

Array 7

Program Stack

Return Address

Stack Canary

R

17

Control-Flow Hijacking lllustrated

Pointer -

[/

Array 7

Program Stack

ROP Pointer

Stack Canary

R

18

What is a Shadow Stack?

foo() ‘{
bar(){

Program Stack

Return Address

Return Address

Shadow Stack

Return Address

Return Address

19

Shadow Stack Defense

Program Stack Shadow Stack
ROP Pointer ﬁ Shadow RA
Stack Canary
vointer | | —

Shadow Stack Defense

Program Stack Shadow Stack
ROP Pointer Shadow RA
Stack Canary
voiver | | I —

Shadow Stack Defense

Program Stack Shadow Stack
ROP Pointer x Shadow RA
Stack Canary

Pointer -

Array 7

Advantages of Shadow Stacks

* Know at runtime what function you were called from
* Dynamic defense — does NOT rely on static analysis

» Separates code and data planes for backward edges

Fully precise backward edge protection!

23

Shadow Stack Design Space

Direct Mapping [1] Indirect Mapping [2],[3]
Shadow | Grows on
Stack demand
Shadow
| s |)
— constant
8MB{ Stack Stack 8MB{ Stack Stack

[1] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost of shadow stacks and stack canaries,” in AsiaCCS '15
[2] T.-c. Chiueh and F.-H. Hsu, “Rad: A compile-time solution to buffer overflow attacks,” in ICDCS '01

[3] L. Davi, A.-R. Sadeghi, and M. Winandy, “Ropdefender: A detection tool to defend against return-oriented programming attacks,” in AsiaCCS’11

24

Recommended Shadow Stack

* Indirect mapping

* Use a general purpose register for shadow stack pointer

Optimal performance and high compatibility!

25

Recommended Mapping

* Indirect Mapping

* As performant as direct mapping

* Minimizes memory overhead

Fastest mapping has lowest memory overhead!

26

Recommended Encoding

» Use general purpose (GP) register for shadow stack pointer
* Does not increase register pressure

* Significant optimization for shadow stacks

Dedicating a register to the shadow stack
pointer is an effective optimization!

27

Compatibility of Recommended Shadow
Stack

* Threading: fully supported. GP registers are thread local
e Stack Unwinding: provide instrumented setjmp / longjmp

* Unprotected Code: save and restore shadow stack pointer

Support all applications and
incremental deployment!

28

Intra-Process Memory Isolation

» Shadow Stack splits code and data planes

* Enables integrity enforcement by isolating return addresses

Shadow Stacks enable code pointer integrity
for return addresses!

29

Intra-Process Memory Isolation

e Software based randomization defense are defeasible

* Intel MPX uses bounds checks for isolation, moderate performance

* Intel MPK changes permissions of pages, slow performance

None of these are fully satisfactory. Tagged
architectures are a promising new approach.

30

SPEC CPU2006 Performance Evaluation

Shadow Geometric

Stack Mean Max Min

Direct 5.78% 38.68% 0.00%

Recommended 3.65% 9.70% 0.00%

SPEC CPU2006 Performance Evaluation

Shadow Geometric

Stack Mean Max Min

Direct 5.78% 38.68% 0.00%

Recommended 3.65% 9.70% 0.00%

SPEC CPU2006 - Integrity Enforcement

ety oot | e | i
Randomization 4.31% 13.68% 0.00%
MPX 12.12% 33.02% 2.47%
MPK 61.18% 419.81% 0.00%

Conclusion

* Stack remains vulnerable to code reuse attacks

* Need to separate return addresses from data plane

* Recommend a compact, register based shadow stack for deployment

Shadow Stacks + CFl = practical CFH mitigation

https://github.com/HexHive/ShadowStack

34

