
SoK: Shining Light on
Shadow Stacks

Nathan	Burow,	Xinping	Zhang,	Mathias	Payer	

Control-Flow Hijacking (CFH)

• Microsoft:	70%	of	bugs	are	memory	corruptions		

• Control	and	Data	Planes	are	interleaved		

• Memory	corruption	à	Control-Flow	Hijacking	

2	
Data	 Code	Pointer	

Control-Flow Hijacking (CFH)

• Microsoft:	70%	of	bugs	are	memory	corruptions	

• Control	and	Data	Planes	are	interleaved	

• Memory	corruption	à	Control-Flow	Hijacking	

3	
Data	 Code	Pointer	

Forward Edge

•  Function	pointers;	virtual	calls	

• Control-Flow	Integrity	(CFI)	–	statically	calculates	target	sets	

4	

Forward Edge

•  Function	pointers;	virtual	calls	

• Control-Flow	Integrity	(CFI)	–	statically	calculates	target	sets	

5	

fptr()	

Forward Edge

•  Function	pointers;	virtual	calls	

• Control-Flow	Integrity	(CFI)	–	statically	calculates	target	sets	

6	

fptr()	

Backward Edge

• Return	Instructions	
• Does	CFI	style	analysis	work?	

7	

Backward Edge

• Return	Instructions	
• Does	CFI	style	analysis	work?	

8	

ret	

Backward Edge

• Return	Instructions	
• Does	CFI	style	analysis	work?	

9	

NO	

Backward Edge

• CFI	style	target	sets	include	every	call	site	for	the	function	

•  Target	sets	are	too	large	to	provide	meaningful	protection	

10	

Security	requires	integrity	for	return	addresses!	

CFH Mitigation Today

•  Seminal	CFI	paper	by	Abadi	et.	al.	called	for	shadow	stack		

•  See	Burow	et	al	CSUR	2017[1]		

• Deployed	versions	by	Microsoft	/	Google	only	cover	forward	edge	

11	

No	equally	strong	defense	for	backward	edge!	

[1]	Burow	et.	al.	“Control-flow	integrity:	Precision,	security,	and	performance.”	CSUR	2017.	

Shadow Stacks

•  Separate	return	addresses	from	data	plane	

• Provide	integrity	protection	for	return	addresses	

• Performant	and	highly	compatible		

12	

Need	to	deploy	Shadow	Stack	with	CFI!	

Control-Flow Hijacking Illustrated
Program	Stack	

Return	Address	

Stack	Canary	

Array	

Pointer	

13	

Control-Flow Hijacking Illustrated
Program	Stack	

Return	Address	

Stack	Canary	

Array	

Pointer	

14	

Control-Flow Hijacking Illustrated
Program	Stack	

Return	Address	

Stack	Canary	

Array	

Pointer	

15	

Control-Flow Hijacking Illustrated
Program	Stack	

Return	Address	

Stack	Canary	

Array	

Pointer	

16	

Control-Flow Hijacking Illustrated
Program	Stack	

Return	Address	

Stack	Canary	

Array	

Pointer	

17	

Control-Flow Hijacking Illustrated
Program	Stack	

ROP	Pointer	

Stack	Canary	

Array	

Pointer	

18	

What is a Shadow Stack?

⋮	

foo()	

bar()	

Return	Address	

Return	Address	

Program	Stack	 Shadow	Stack	

Return	Address	

⋮	
Return	Address	

19	

Shadow Stack Defense
Program	Stack	

ROP	Pointer	

Stack	Canary	

Array	

Pointer	

Shadow	RA	

Shadow	Stack	

20	

Shadow Stack Defense
Program	Stack	

ROP	Pointer	

Stack	Canary	

Array	

Pointer	

Shadow	RA	

Shadow	Stack	

21	

Shadow Stack Defense
Program	Stack	

ROP	Pointer	

Stack	Canary	

Array	

Pointer	

Shadow	RA	

Shadow	Stack	

❌	

22	

Advantages of Shadow Stacks

• Know	at	runtime	what	function	you	were	called	from	

• Dynamic	defense	–	does	NOT	rely	on	static	analysis		

•  Separates	code	and	data	planes	for	backward	edges	

23	

Fully	precise	backward	edge	protection!	

Shadow Stack Design Space

24	

[1]	T.	H.	Dang,	P.	Maniatis,	and	D.	Wagner,	“The	performance	cost	of	shadow	stacks	and	stack	canaries,”	in	AsiaCCS	’15	
[2]	T.-c.	Chiueh	and	F.-H.	Hsu,	“Rad:	A	compile-time	solution	to	buffer	overflow	attacks,”	in	ICDCS	’01	
[3]	L.	Davi,	A.-R.	Sadeghi,	and	M.	Winandy,	“Ropdefender:	A	detection	tool	to	defend	against	return-oriented	programming	attacks,”	in	AsiaCCS’11	

[1]	 [2],[3]	

Stack Stack

Shadow
Stack

8MB

8MB

constant

Direct Mapping

Stack Stack

Shadow
Stack

8MB

Indirect Mapping

Grows on
demand

Recommended Shadow Stack

•  Indirect	mapping	

• Use	a	general	purpose	register	for	shadow	stack	pointer	

25	

Optimal	performance	and	high	compatibility!	

Recommended Mapping

•  Indirect	Mapping	

• As	performant	as	direct	mapping	

• Minimizes	memory	overhead	

26	

Fastest	mapping	has	lowest	memory	overhead!	

Recommended Encoding

• Use	general	purpose	(GP)	register	for	shadow	stack	pointer	

• Does	not	increase	register	pressure	

•  Significant	optimization	for	shadow	stacks	

27	

Dedicating	a	register	to	the	shadow	stack		
pointer	is	an	effective	optimization!	

Compatibility of Recommended Shadow
Stack

•  Threading:	fully	supported.	GP	registers	are	thread	local	

•  Stack	Unwinding:	provide	instrumented	setjmp	/	longjmp	

• Unprotected	Code:	save	and	restore	shadow	stack	pointer		

28	

Support	all	applications	and		
incremental	deployment!	

Intra-Process Memory Isolation

•  Shadow	Stack	splits	code	and	data	planes		

•  Enables	integrity	enforcement	by	isolating	return	addresses	

		

29	

Shadow	Stacks	enable	code	pointer	integrity		
for	return	addresses!	

Intra-Process Memory Isolation

•  Software	based	randomization	defense	are	defeasible		

•  Intel	MPX	uses	bounds	checks	for	isolation,	moderate	performance	

•  Intel	MPK	changes	permissions	of	pages,	slow	performance	

30	

None	of	these	are	fully	satisfactory.	Tagged	
architectures	are	a	promising	new	approach.	

SPEC CPU2006 Performance Evaluation

31	

Shadow	
Stack	

Geometric	
Mean	 Max	 Min	

Direct		 5.78%	 38.68%	 0.00%	

Recommended	 3.65%	 9.70%	 0.00%	

SPEC CPU2006 Performance Evaluation

32	

Shadow	
Stack	

Geometric	
Mean	 Max	 Min	

Direct		 5.78%	 38.68%	 0.00%	

Recommended	 3.65%	 9.70%	 0.00%	

SPEC CPU2006 – Integrity Enforcement

33	

Integrity	
Scheme	

Geometric	
Mean	 Max	 Min	

Randomization	 4.31%	 13.68%	 0.00%	

MPX	 12.12%	 33.02%	 2.47%	

MPK	 61.18%	 419.81%	 0.00%	

Conclusion

•  Stack	remains	vulnerable	to	code	reuse	attacks	

• Need	to	separate	return	addresses	from	data	plane	

• Recommend	a	compact,	register	based	shadow	stack	for	deployment	
	

34	

Shadow	Stacks	+	CFI	=	practical	CFH	mitigation	

https://github.com/HexHive/ShadowStack	

