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Control-Flow Hijacking (CFH) 

• Microsoft:	70%	of	bugs	are	memory	corruptions		

• Control	and	Data	Planes	are	interleaved		

• Memory	corruption	à	Control-Flow	Hijacking	
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Forward Edge 

•  Function	pointers;	virtual	calls	

• Control-Flow	Integrity	(CFI)	–	statically	calculates	target	sets	
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Backward Edge 

• Return	Instructions	
• Does	CFI	style	analysis	work?	
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NO	



Backward Edge 

• CFI	style	target	sets	include	every	call	site	for	the	function	

•  Target	sets	are	too	large	to	provide	meaningful	protection	
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Security	requires	integrity	for	return	addresses!	



CFH Mitigation Today 

•  Seminal	CFI	paper	by	Abadi	et.	al.	called	for	shadow	stack		

•  See	Burow	et	al	CSUR	2017[1]		

• Deployed	versions	by	Microsoft	/	Google	only	cover	forward	edge	
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No	equally	strong	defense	for	backward	edge!	

[1]	Burow	et.	al.	“Control-flow	integrity:	Precision,	security,	and	performance.”	CSUR	2017.	



Shadow Stacks 

•  Separate	return	addresses	from	data	plane	

• Provide	integrity	protection	for	return	addresses	

• Performant	and	highly	compatible		
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Need	to	deploy	Shadow	Stack	with	CFI!	



Control-Flow Hijacking Illustrated 
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What is a Shadow Stack? 
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Shadow Stack Defense  
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Advantages of Shadow Stacks 

• Know	at	runtime	what	function	you	were	called	from	

• Dynamic	defense	–	does	NOT	rely	on	static	analysis		

•  Separates	code	and	data	planes	for	backward	edges	
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Fully	precise	backward	edge	protection!	



Shadow Stack Design Space 
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Recommended Shadow Stack 

•  Indirect	mapping	

• Use	a	general	purpose	register	for	shadow	stack	pointer	
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Optimal	performance	and	high	compatibility!	



Recommended Mapping 

•  Indirect	Mapping	

• As	performant	as	direct	mapping	

• Minimizes	memory	overhead	
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Fastest	mapping	has	lowest	memory	overhead!	



Recommended Encoding 

• Use	general	purpose	(GP)	register	for	shadow	stack	pointer	

• Does	not	increase	register	pressure	

•  Significant	optimization	for	shadow	stacks	
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Dedicating	a	register	to	the	shadow	stack		
pointer	is	an	effective	optimization!	



Compatibility of Recommended Shadow 
Stack  

•  Threading:	fully	supported.	GP	registers	are	thread	local	

•  Stack	Unwinding:	provide	instrumented	setjmp	/	longjmp	

• Unprotected	Code:	save	and	restore	shadow	stack	pointer		
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Support	all	applications	and		
incremental	deployment!	



Intra-Process Memory Isolation 

•  Shadow	Stack	splits	code	and	data	planes		

•  Enables	integrity	enforcement	by	isolating	return	addresses	

		

29	

Shadow	Stacks	enable	code	pointer	integrity		
for	return	addresses!	



Intra-Process Memory Isolation 

•  Software	based	randomization	defense	are	defeasible		

•  Intel	MPX	uses	bounds	checks	for	isolation,	moderate	performance	

•  Intel	MPK	changes	permissions	of	pages,	slow	performance	
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None	of	these	are	fully	satisfactory.	Tagged	
architectures	are	a	promising	new	approach.	



SPEC CPU2006 Performance Evaluation 
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Shadow	
Stack	

Geometric	
Mean	 Max	 Min	

Direct		 5.78%	 38.68%	 0.00%	

Recommended	 3.65%	 9.70%	 0.00%	



SPEC CPU2006 Performance Evaluation 

32	

Shadow	
Stack	

Geometric	
Mean	 Max	 Min	

Direct		 5.78%	 38.68%	 0.00%	

Recommended	 3.65%	 9.70%	 0.00%	



SPEC CPU2006 – Integrity Enforcement 
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Integrity	
Scheme	

Geometric	
Mean	 Max	 Min	

Randomization	 4.31%	 13.68%	 0.00%	

MPX	 12.12%	 33.02%	 2.47%	

MPK	 61.18%	 419.81%	 0.00%	



Conclusion 

•  Stack	remains	vulnerable	to	code	reuse	attacks	

• Need	to	separate	return	addresses	from	data	plane	

• Recommend	a	compact,	register	based	shadow	stack	for	deployment	
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Shadow	Stacks	+	CFI	=	practical	CFH	mitigation	

https://github.com/HexHive/ShadowStack	


