
Towards Automated Safety Vetting of PLC Code
in Real-World Plants

Mu Zhang∗, Chien-Ying Chen†, Bin-Chou Kao‡, Yassine Qamsane§, Yuru Shao¶, Yikai Lin¶,
 Elaine Shi∗, Sibin Mohan†, Kira Barton§, James Moyne§ and Z. Morley Mao¶

∗CS, Cornell; †CS, UIUC; ‡ITI, UIUC; §ME, UMich; ¶EECS, UMich
∗mz496@cornell.edu, ∗elaine@cs.cornell.edu, †{cchen140,sibin}@illinois.edu, ‡ bkao2@illinois.edu,

§{yqamsane,bartonkl,moyne}@umich.edu, ¶{yurushao,yklin,zmao}@umich.edu

Safety Hazards are Unique Threats in ICS

2	

PLC being a Major Attack Vector

3	

Physical Damage

Core Control Unit on
the Factory Floor

Programmable
Logic Controller

(PLC)

Controller Code w/
Safety Violations

Insider Attacks or Bugs
 Different from Financial
Loss Often Seen in Attacks
in Consumer Systems

A great many of prior work: e.g., TSV (NDSS’14), SYMPLC (FSE’17)

Overlooked Fact: ICS is Complex; PLC is NOT Working Alone

4	

Real-world Automotive
Manufacturing Testbed

Developed by No.1 Vendor
(Rockwell Automation)

PLCs are driven by events
from other machines

Testing PLC code
requires external
event inputs

PLC
Programmable

Logic Controller

Robot

CNC

Computer Numerical

Control Machine

Robot

Part (Vehicle Frame)

on Pallet

Testing Event-driven Code in Other Domains  
– Simulating and Rearranging Events

5	

Android App: Anand FSE’12, Jensen ISSTA’13,
Mirzaei Softw. Eng. Notes’12, Yang CCS’13

Web Program: SymJS FSE’14, Saxena Oakland’10

Crash

Simulated Event Sequence

App Testing in
Emulator

Rearrange Event Order

…

Rearranging Event Order to Test PLC Code

6

But Different Timings
Event Sequences of Same Ordering

10s

7s

Timing factor: Nature of ICS

Timeliness, Throughput
 à Internal Timeouts

Machine Speed Limits
 à External Timing Constraints

PLC Simulator

is NOT Sufficient

A Running Example

7	

Pallet
 Update Part

Deliver Part

time	

 Update_Complete = TRUE

&& Part_AtConveyor = TRUE

Pallet enters
 Pallet leaves

 Update_Complete = TRUE

&& Part_AtConveyor = TRUE

{	

0.5s

Safety Req: <= 30s	X

Events Received by PLC

TPTL Spec:
Violated

8	

time	

1->….->5->6->7 Correct!

0.5s	

….

time	

5->7->6 Error!

0.5s	

….

time	

5->7->6 Still Correct!

0.5s	

….

Traditional Event Permutation
Doesn’t Solve the Problem

VETPLC: Generating Timed Event Sequences to enable
Automated Safety Vetting of PLC Code

9	

Timed Event Sequences

30s	 1m	 10s	 45s	

Safety Violations

PLC Simulator

Execution Traces

Program Analysis on PLC/Robot:

Generating Event Causality Graph

Data Mining on Runtime Data:

Discovering Temporal Invariants

VETPLC on Running Example

10	

time	{

Soft Timing Invariant

- Can be observed from testbed

Update	I/O	Time	

{	

​𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆/​𝑺𝒑𝒆𝒆𝒅↓𝑹𝒐𝒃𝒐𝒕   = 𝐃𝐞𝐥𝐢𝐯𝐞𝐫𝐲𝐓𝐢𝐦𝐞

Soft Invariant

– Can be derived from
testbed: Speed x Time

Configurable
Variable

{	

Timeout

Constant (0.5s)
in Robot Code

IF(NOT Part_AtConveyor)
THEN DI[0]=TRUE
…
IF(Update_Complete)
THEN …
…
IF(Part_AtConveyor)
THEN …

DI[0] -> PICKCNC1
PICKCNC1
…
L P[0] 100mm/sec FINE
…
DO[2:CNC1 part@conveyor]=ON
WAIT .50(sec)
DO[2:CNC1
part@conveyor]=OFF

PLC
 FANUC Robot

IF(Part_AtConveyor)
THEN …

Timed Event Causality Graph (TECG): Find Valid Event Orders

11	

Robot	Side	

PLC	Side	Pallet_Sensor	
P_IN,	(P)	 ¬	Part_Sensor	

P_IN,	(P)	

Part_AtConveyor	
P_IN,	(0.5s)	

DO[2]	
R_OUT,	(0.5s)	 RFID_IO_Complete	

P_IN,	(P)	

CNC_Part_Ready	
P_IN,	(P)	

Robot_Ready	
P_IN,	(P)	

¬
Part_AtConveyor	

P_IN,	(P)	

Pallet_Arrival	
P_Local,	(P)	

Update_Complete	
P_Local,	(P)	

Deliver_Part	
P_OUT,	(P)		

DI[0]	
R_IN,	(P)	

[15s,	20s]	

Update_Part_Process	
P_Local,	(P)	

[3s,	39.4s]	

Event	Name	
Type,	(Duration)	

Context-Sensitive, Flow sensitive,
Inter-procedural Dataflow Analysis

Mining Temporal Invariants for Events: 2 Steps

12	

Follows[εa][εb] = Occurrence[εa]
Step 1: Qualitative “followed-by”:

– Synoptic (FSE’11)

Step 2: Quantitative “with-in”:

 – Perfume (ASE’14)

tx.(εa → ty.(εb ∧ ty − tx ≥ τlower))

tx.(εa → ty.(εb ∧ ty − tx ≤ τupper))

Advantage of TECG: Only need to mine relations that do not contradict TECG

Results for Motivating Example

(1.2 GB data for 10 hours):

Creating Timed Event Sequences

13	

x

x
x

0.5s	

Pallet_Sensor	

¬Part_Sensor	

CNC_Part_Ready	

Robot_Ready	

¬Part_AtConveyor	

Update_Complete	

Part_AtConveyor	
Part_AtConveyorT+10	

Safety Violation Triggered

How to discretize durations?

Evaluation on Real Testbeds for Different Scenarios

14	

PLC

Robot

CNC

Robot

2 Different
Testbeds

SMART: Automotive Production Line
 Fischertechnik: Part Processing w/ 4 PLCs

10 Safety-critical
Scenarios

S1: Conveyor Overflow #1

S2: Robot in Danger Zone

S3: Conveyor Overflow #2

S4: Part-Gate Collision

S5: CNC Overflow

S6: Ram-Part Collision

S7: CNC-Part Collision

S8: Conveyor Overflow #3

S9: Conveyor Underflow

S10: Ram-Part Collision #2

Evaluation: How many sequences are created?

15	

Red à Green: Program analysis reduces amount of event sequences

Green à Orange à Black à Blue: Time discretization can significantly increases that

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

90000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Untimed	AllSeqs	

Untimed	VetPLC-Seqs	

VetPLC-TSeqs-2	(Coarse)	

VetPLC-TSeqs-5(Medium)	

VetPLC-TSeqs-10(Fine)	

Bug Detected? State-of-the-Art vs. VETPLC

16	

VETPLC Outperforms State-of-the-art!
More Time Slices -> More Precise Error-Triggering Range

Empirically, 5 slices works better.

State-of-the-art
 VETPLC

Conclusion

q Insight: real-world PLC code is event-driven and timing-sensitive

q Solution: VETPLC automatically constructs timed event

sequences via analyzing event causalities in PLC/robot code plus
mining runtime data from physical testbeds

q Effectiveness: VETPLC outperforms state-of-the-art and has
found “organic” vulnerabilities in two different types of real-world
ICS testbeds.

17	

	
	

Thank you!

PLC Programming Paradigm: Scan Cycle

19	

IF Pallet_Sensor AND NOT (Part_Sensor) THEN
 Pallet_Arrival := true;
END_IF;

IF Part_Sensor THEN
 Retract_Stopper := true;
END_IF;

IF Pallet_Arrival AND … THEN
 Deilver_Part := true;
 …
END_IF;

Input Phase

Output Phase

X
Pallet_Arrival_NEW 	

Pallet_Arrival_OLD 	

Pallet_Arrival_OLD := Pallet_Arrival_NEW	

Computation Phase

v No dataflow in
one cycle

v Dataflow
across cycles

v  Any “Define” in
a cycle may
affect “Use” in
the next

Technical Challenge: Distributed Event Sources

20	

Ideally

EDeliver_Part
 EPart_AtConveyor

[24.4s, 24.6s]

0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
DDeliver_Part

0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1
 1
 1
 1
 1
DPart_AtConveyor

Solution: Inferring Events from State Variables

Reality

EDeliver_Part

EPart_AtConveyor

PLC

Robot

Speed Reconfiguration

21	

∵	

​​𝜏↓𝑙𝑜𝑤𝑒𝑟 × ​𝑠𝑝𝑒𝑒𝑑↓𝑐𝑜𝑛𝑓 /​𝒔𝒑𝒆𝒆𝒅↓𝒎𝒂𝒙  ≤ ​𝑻↓𝒋𝒐𝒃 ≤ ​​𝜏↓𝑢𝑝𝑝𝑒𝑟 × ​𝑠𝑝𝑒𝑒𝑑↓𝑐𝑜𝑛𝑓 /​𝒔𝒑𝒆𝒆𝒅↓𝒎𝒊𝒏  	
∴	

​𝜏↓𝑙𝑜𝑤𝑒𝑟 ≤ ​𝑻↓𝒋𝒐𝒃 = ​𝑗𝑜𝑏/​𝑠𝑝𝑒𝑒𝑑↓𝑐𝑜𝑛𝑓  ≤	 ​𝜏↓𝑢𝑝𝑝𝑒𝑟 	 Time variation caused by physical
operations or program execution paths

​𝒔𝒑𝒆𝒆𝒅↓𝒎𝒊𝒏  ≤ ​𝑠𝑝𝑒𝑒𝑑↓𝑐𝑜𝑛𝑓 ≤ ​𝒔𝒑𝒆𝒆𝒅↓𝒎𝒂𝒙 	 Time variation caused by
reconfiguring machine speeds

Speedrated
 0 ?
Speedhigh-throughput?
Speedhigh-throughput-and-safe

Scenario-Specific Safety Specs

22	

