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Deep learning Tasks




Privacy Threats

* We provide a comprehensive privacy analysis of deep learning
algorithms.

* Our objective is to measure information leakage of deep
learning models about their training data

* In particular we emphasize on membership inference
attacks

* Can an adversary infer whether or not a particular data
record was part of the training set?
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Gradients Leak Information
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Different Learning/Attack Settings

* Fully trained

* Black/ White box

* Fine-tuning

* Federated learning

* Central/ local Attacker

®* Passive/ Active



Federated Model
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Active Attack on Federated
Learning
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Active Attack on Federated
Learning

i For the data points
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local training will
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Active Attacks In
Federated Model
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Trained
Model

Scenario 1: Fully Trained Model
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Scenario 2: Central Attacker In
Federated Model
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Scenario 2: Central Attacker in
Federated Model
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Scenario 3: Local Attacker in
Federated Learning
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Different observation —_— -
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Experimental Setup

Unlike previous works, we used publicly available pretrained models
We used all common regularization technigques

We implemented our attacks in PyTorch

We used following datasets:

* CIFAR100

* Purchase100

* Texas100
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Results



Pretrained Models Attacks

Gradients leak
significant information

Target Model Attack Accuracy
Dataset Architecture Train Accuracy | Test Accuracy Black-box | White-box (Outputs) | White-box (Gradients)
CIFAR100 Alexnet 99% 44% 74.2%
CIFAR100 ResNet 89% 73% 62.2%
CIFAR100 DenseNet 100% 82% 67.7%
Texas 100 Fully Connected 81.6% 52% 63.0%
Purchase100 | Fully Connected 100% 80% 67.6%

Last layer contains
the most information
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Federated Attacks

Target Model Global Attacker (the parameter aggregator) Local Attacker (a participant)
Passive Active Passive Active
Dataset Architecture Gradient Ascent | Isolating | Isolating Gradient Ascent Gradient Ascent
CIFARI00 Alexnet 85.1% 88.2% 89.0% 92.1% 73.1% 76.3%
CIFARI100 DenseNet 79.2% 82.1% 84.3% 87.3% 72.2% 76.7%
Texas100 Fully Connected 66.4% 69.5% 69.3% 71.7% 62.4% 66.4%
Purchase100 | Fully Connected || 72.4% 75.4% 75.3% 82.5% 65.8% 69.8%

Global attack is more powerful
than the local attacker

An active attacker can force SGD
to leak more information
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Conclusions

We go beyond black-box scenario and try to understand why a deep
learning model leak information

Gradients leak information about the training dataset

Attacker in the federated learning can take the advantage of multiple
observations to leak more information

In the federated setting, an attacker can actively force SGD to leak
information

Questions ?
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Overall Attack Model
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Scenario 4: Fine-Tuning Model
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Fine-tuning Attacks

Distinguishing
specialized/general

Distinguishing
general / non-member
datasets

Distinguishing
Specialized / non-
member datasets

Dataset Arch datasets
CIFARI100 Alexnet 62.1%
CIFAR100 DenseNet 63.3%

Texas100 Fully Connected 58.4%

Purchase100 | Fully Connected 64.4%

75.4%
74.6%
68.4%
73.8%

71.3%
71.5%
67.2%
71.2%

to the membership attacks
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Federated Attacks

Observed Epochs Attack Accuracy Number of Participants | Attack Accuracy
5,10,15, 20,25 57.4% 2 89.0%
10, 20, 30, 40, 50 76.5% 3 78.1%
50, 100, 150, 200, 250 79.5% 4 76.7%
100, 150, 200, 250, 300 85.1% 5 67.2%
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Fine-Tuning Model Leakage
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