

Comprehensive Privacy Analysis of Deep Learning:

Passive and Active White-box Inference Attacks against Centralized and Federated Learning

Milad Nasr¹, Reza Shokri², Amir Houmansadr¹

¹University of Massachusetts Amherst, ²National University of Singapore

Deep learning Tasks

Privacy Threats

- We provide a comprehensive privacy analysis of deep learning algorithms.
 - Our objective is to measure information leakage of deep learning models about their training data
 - In particular we emphasize on membership inference attacks
 - Can an adversary infer whether or not a particular data record was part of the training set?

Membership Inference

Training a Model

SGD:

Model parameters

L Loss

∇L↓w Loss gradient w.r.t parameters

 $W = W - \alpha \nabla L / W$

Model parameters
change in the
opposite direction
of each training
data point's
gradient

Training a Model

Training a Model

Gradients leak information by behaving differently for non-member data vs. member data.

Gradients Leak Information

Different Learning/Attack Settings

- Fully trained
 - Black/ White box
- Fine-tuning
- Federated learning
 - Central/ local Attacker
 - Passive/ Active

Federated Model

Federated Learning

Multiple observations:

Every point leave traces on the target function

Active Attack on Federated Learning

Active Attack on Federated Learning

For the data points that are in the training dataset, local training will compensate for the active attacker

Active Attacks in Federated Model

Scenario 1: Fully Trained Model

Scenario 2: Central Attacker in Federated Model

Scenario 2: Central Attacker in Federated Model

Scenario 3: Local Attacker in Federated Learning

Score function

Experimental Setup

- Unlike previous works, we used publicly available pretrained models
- We used all common regularization techniques
- We implemented our attacks in PyTorch
- We used following datasets:
 - CIFAR100
 - Purchase100
 - Texas 100

Results

Pretrained Models Attacks

Gradients leak significant information

Target Model				Attack Accuracy			
Dataset	Architecture	Train Accuracy	Test Accuracy	Black-box	White-box (Outputs)	White-box (Gradients)	
CIFAR100	Alexnet	99%	44%	74.2%	74.6%	75.1%	
CIFAR100	ResNet	89%	73%	62.2%	62.2%	64.3%	
CIFAR100	DenseNet	100%	82%	67.7%	67.7%	74.3%	
Texas 100	Fully Connected	81.6%	52%	63.0%	63.3%	68.3%	
Purchase100	Fully Connected	100%	80%	67.6%	67.6%	73.4%	

Last layer contains the most information

Federated Attacks

Target Model		Global Attacker (the parameter aggregator)				Local Attacker (a participant)		
		Passive	Active			Passive	Active	
Dataset	Architecture		Gradient Ascent Isolating Isolating Gradient Ascent		Gradient Ascent			
CIFAR100	Alexnet	85.1%	88.2%	89.0%	92.1%	73.1%	76.3%	
CIFAR100	DenseNet	79.2%	82.1%	84.3%	87.3%	72.2%	76.7%	
Texas100	Fully Connected	66.4%	69.5%	69.3%	71.7%	62.4%	66.4%	
Purchase100	Fully Connected	72.4%	75.4%	75.3%	82.5%	65.8%	69.8%	

Global attack is more powerful than the local attacker

An active attacker can force SGD to leak more information

Conclusions

- We go beyond black-box scenario and try to understand why a deep learning model leak information
- Gradients leak information about the training dataset
- Attacker in the federated learning can take the advantage of multiple observations to leak more information
- In the federated setting, an attacker can actively force SGD to leak information

Questions?

Overall Attack Model

Scenario 4: Fine-Tuning Model

Fine-tuning Attacks

Dataset	Arch	Distinguishir specialized/ger datasets	Distinguishing general / non-member datasets		Distinguishing Specialized / non- member datasets		
CIFAR100	Alexnet	62.1%	75.4%		71.3%		
CIFAR100	DenseNet	63.3%	74.6%		71.5%		
Texas100	Fully Connected	58.4%	68.4%		67.2%		
Purchase100	Fully Connected	64.4%	73.8%		71.2%		

Both specialized and general datasets are vulnerable to the membership attacks

Federated Attacks

Observed Epochs	Attack Accuracy
5, 10, 15, 20, 25	57.4%
10, 20, 30, 40, 50	76.5%
50, 100, 150, 200, 250	79.5%
100, 150, 200, 250, 300	85.1%

Number of Participants	Attack Accuracy
2	89.0%
3	78.1%
4	76.7%
5	67.2%

Fine-Tuning Model Leakage

