On the Security of Two-Round Multi-Signatures

Manu Drijvers1, Kasra Edalatnejad2, Bryan Ford2, Eike Kiltz3, Julian Loss3, Gregory Neven1, Igors Stepanovs4

1DFINITY, 2EPFL, 3Ruhr-University Bochum, 4UCSD
Multi-signatures

\[(pk_1, sk_1) \leftarrow Kg \]
\[(pk_2, sk_2) \leftarrow Kg \]
\[(pk_3, sk_3) \leftarrow Kg \]

Sign((pk_1, pk_2, pk_3), sk_1, m) \leftrightarrow \text{Sign}((pk_1, pk_2, pk_3), sk_2, m) \leftrightarrow \text{Sign}((pk_1, pk_2, pk_3), sk_3, m)

\[\rightarrow \sigma \]
\[\rightarrow \sigma \]
\[\rightarrow \sigma \]

Verify((pk_1, pk_2, pk_3), m, \sigma) = 1

Every signer must agree to sign m

Goal: short signature (preferably \(\approx\) single signature, efficiently verifiable definitely \(<\ll N\) signatures)**
Multi-signatures

$$(pk_1, sk_1) \leftarrow Kg$$

Sign$$((pk_1, pk_2, pk_3), sk_1, m) \leftarrow \text{Sign}((pk_1, pk_2, pk_3), sk_2, m) \leftarrow \text{Sign}((pk_1, pk_2, pk_3), sk_3, m)$$

$$\rightarrow \sigma$$

Key aggregation: $$apk \leftarrow \text{KAgg}(pk_1, pk_2, pk_3)$$

Verify$$(apk, m, \sigma) = 1$$

Every signer must agree to sign m

Goal: short signature (preferably \approx single signature, definitely $<< N$ signatures)

efficiently verifiable
Applications of multi-signatures

- Improve Bitcoin throughput / reduce blockchain size
 - "multisig" transactions as small as other transactions
 - Reduce size of multi-input multi-output transactions

- Collective signing by co-thorities (e.g., CoSi [STV+16])

- Distributed random beacons (e.g., RandHound [SJK+17])

- Block certification in proof-of-stake / permissioned blockchains
 - e.g., Dfinity, OmniLedger, Ziliqa, Harmony, Algorand, ...
Existing multi-signatures
Schnorr signatures

\[\text{pk} = g^{sk} \]
\[r \leftarrow_R Z_q \]
\[t \leftarrow g^r \]
\[c \leftarrow H(t,m) \]
\[s \leftarrow r + c \cdot sk \mod q \]
\[\sigma \leftarrow (c, s) \]

Verification:
\[c = H(g^s \cdot \text{pk}^{-c}, m) \]

Efficient & Provably secure
- under discrete-log assumption
- in the random-oracle model: model hash function as ideal random function
"Plain" Schnorr multi-signatures

\[
\begin{align*}
\text{pk}_1 &= g^{sk_1} \\
\quad r_1 &\gets_R Z_q \\
\quad t_1 &\gets g^{r_1} \\
\quad t &\gets t_1 \cdot t_2 \cdot t_3 \\
\quad c &\gets H(t, m) \\
\quad s_1 &\gets r_1 + c \cdot sk_1 \pmod{q} \\
\quad s &\gets s_1 + s_2 + s_3 \pmod{q} \\
\quad \sigma &\gets (c, s)
\end{align*}
\]

\[
\begin{align*}
\text{pk}_2 &= g^{sk_2} \\
\quad r_2 &\gets_R Z_q \\
\quad t_2 &\gets g^{r_2} \\
\quad t &\gets t_1 \cdot t_2 \cdot t_3 \\
\quad c &\gets H(t, m) \\
\quad s_2 &\gets r_2 + c \cdot sk_2 \pmod{q} \\
\quad s &\gets s_1 + s_2 + s_3 \pmod{q} \\
\quad \sigma &\gets (c, s)
\end{align*}
\]

\[
\begin{align*}
\text{pk}_3 &= g^{sk_3} \\
\quad r_3 &\gets_R Z_q \\
\quad t_3 &\gets g^{r_3} \\
\quad t &\gets t_1 \cdot t_2 \cdot t_3 \\
\quad c &\gets H(t, m) \\
\quad s_3 &\gets r_3 + c \cdot sk_3 \pmod{q} \\
\quad s &\gets s_1 + s_2 + s_3 \pmod{q} \\
\quad \sigma &\gets (c, s)
\end{align*}
\]

\[
\begin{align*}
\text{apk} &\gets \text{pk}_1 \cdot \text{pk}_2 \cdot \text{pk}_3 \\
\text{Check} &\quad c = H(g^s \cdot \text{apk}^{-c}, m)
\end{align*}
\]
Problem 1: Rogue-key attacks

\[
\begin{align*}
\text{pk}_1 &= g^{sk_1} \\
\text{pk}_2 &= g^{sk_2} / \text{pk}_1 \\
\text{apk} &= \text{pk}_1 \cdot \text{pk}_2 = g^{sk_2}
\end{align*}
\]

can compute signatures under apk by himself!

Known remedies:

• Per-signer challenges [BN06]

• Proofs of possession added to pk [RY07,BCJ08]

• MuSig key aggregation: \(\text{apk} \leftarrow \prod \text{pk}_i^{H(pki, \{\text{pk}_1, ..., \text{pk}_N\})} \) [MPSW18]
Problem 2: Signature simulation

\[\begin{align*}
 c, s_1 & \leftarrow_R \mathbb{Z}_q \\
 t_1 & \leftarrow g^{s_1} \cdot (p^k_1)^c \\
 t & \leftarrow t_1 \cdot t_2 \\
 c & \leftarrow H(t,m)
\end{align*} \]

Standard Schnorr proof technique does not work
(cannot program random oracle, because adversary knows \(t \) before simulator does)
Multi-signatures from discrete logarithms

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Rounds</th>
<th>Rogue keys</th>
<th>Signature simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN [BN06]</td>
<td>3</td>
<td>per-signer challenges</td>
<td>preliminary round (H(t_i))</td>
</tr>
<tr>
<td>BCJ-1 [BCJ08]</td>
<td>2</td>
<td>per-signer challenges</td>
<td>homomorphic equivocable (HE) commitments</td>
</tr>
<tr>
<td>BCJ-2 [BCJ08]</td>
<td>2</td>
<td>proofs of possession</td>
<td>witness-indistinguishable keys</td>
</tr>
<tr>
<td>MWLD [MWLD10]</td>
<td>2</td>
<td>proofs of possession</td>
<td>(no security proof)</td>
</tr>
<tr>
<td>CoSi [STV+16]</td>
<td>2</td>
<td>proofs of possession</td>
<td>per-message HE commitments</td>
</tr>
<tr>
<td>MuSig 1 [MPSW18a]</td>
<td>2</td>
<td>MuSig key aggregation</td>
<td>DL oracle in one-more DL assumption</td>
</tr>
<tr>
<td>mBCJ [this work]</td>
<td>2</td>
<td>proofs of possession</td>
<td>per-message HE commitments</td>
</tr>
<tr>
<td>BDN-DL, MuSig-2 [BDN18, MPSW19]</td>
<td>3</td>
<td>MuSig key aggregation</td>
<td>preliminary round (H(t_i))</td>
</tr>
<tr>
<td>BDN-DLpop [BDN18]</td>
<td>3</td>
<td>proofs of possession</td>
<td>preliminary round (H(t_i))</td>
</tr>
<tr>
<td>BLS [Bol03,RY07]</td>
<td>1</td>
<td>proofs of possession</td>
<td>pairings</td>
</tr>
<tr>
<td>BDN-P [BDN18]</td>
<td>1</td>
<td>MuSig key aggregation</td>
<td>pairings</td>
</tr>
</tbody>
</table>
Attacks and non-provability
Wagner’s generalized birthday attack [W02]

k-sum problem in \mathbb{Z}_q:

Given k lists of random elements in \mathbb{Z}_q

Find (c_1, \ldots, c_k) in lists such that $c_1 + \ldots + c_k = 0 \mod q$

Subexponential solution: Solved for $k = 2^{\sqrt{n}}$ in time $O(2^{2\sqrt{n}})$ where $n = |q|$
Application to “plain” Schnorr and CoSi

- sk only appears in signature in $s = r + c * sk$, with $c = H(g^r, m)$
- If we have signatures with $c_1 + ... + c_{k-1} = H(t^*, m)$, we can forge a signature on m^*!

$$t_1 \leftarrow g^{r_1}$$

$$H(*, m)$$

$$H(*, m)$$

...

$$t_{k-1} \leftarrow g^{r_{k-1}}$$

$$H(*, m)$$

$$H(*, m)$$

$$H(*, m)$$

$$t^* \leftarrow t_1 \cdot ... \cdot t_{k-1}$$

$$-H(t^*, m_1)$$

$$-H(t^*, m_2)$$

$$...$$

$$-H(t^*, m_L)$$

$$c_1 + ... + c_{k-1} = c^*$$
Attacks on two-round multi-signature schemes

• Attack applies to all previously* known two-round schemes
 • BCJ-1 and BCJ-2
 • MWLD
 • CoSi
 • MuSig-1

• Sub-exponential but practical
 (for 256-bit q)
 • 15 parallel signing queries: 2^{62} steps
 • 127 parallel signing queries: 2^{45} steps

• Prevented by increasing $|q|$
 ...any hope for provable (asymptotic) security?

* before first version of this paper
Non-provability of two-round schemes

Theorem: One-more discrete logarithm problem is hard

\[\Downarrow \]

BCJ/MWLD/CoSi/MuSig-1 cannot be proved secure under one-more discrete logarithm

(through algebraic black-box reductions in random-oracle model)

Essentially excludes all known proof techniques (including rewinding) under likely assumptions.

Subtle flaws in proofs of BCJ/MWLD/MuSig-1

(CoSi was never proved secure)
Secure schemes
Modified BCJ multi-signature

- 2 round, secure under discrete logarithm, same efficiency as BCJ
- Large scale deployment:
 - 16,384 signers generate signature within 2 seconds
 - 20% bandwidth, 75% computation increase compared to CoSi (plain schnorr)

Fig. 4. Comparing end-to-end latency of CoSi and mBCJ signing with varying amounts of signers.

Fig. 5. Bandwidth consumption (sent and received combined) of CoSi and mBCJ with varying amounts of signers.

Fig. 6. CPU time (User + System) of CoSi and mBCJ with varying amounts of signers.
Other secure schemes

• Three-round scheme [BDN18, MPSW19]
 • Secure under discrete-log assumption

• Non-interactive scheme from BLS [BLS01, Bol03, RY07, BDN18]
 • Smaller signatures
 • Non-interactive aggregation
 • Requires bilinear pairings
Lessons learned
Lessons learned

• Cryptographic schemes need security proofs
 • Don’t drop steps that look like they’re “just to make the proof work”

• Security proofs must be reviewed
 • Proofs can be subtle, especially with rewinding arguments
 • Tool support for checking proofs?

• Provable security is not perfect, but best tool we have
Thank you!

ia.cr/2018/417
References

[BN06] Bellare, Neven: Multi-signatures in the plain public-Key model and a general forking lemma. CCS 2006
[BCJ08] Bagherzandi, Cheon, Jarecki: Multisignatures secure under the discrete logarithm assumption and a generalized forking lemma. CCS 2008
[BDN18] Boneh, Drijvers, Neven: Compact Multi-signatures for Smaller Blockchains. ASIACRYPT 2018
Modified BCJ multi-signatures

\[\text{pk}_i = g^{sk_i} + \text{PoP} \]

\[(g_2, h_1, h_2) \leftarrow H'(m) \]
\[r, \alpha_1, \alpha_2 \leftarrow R \mathbb{Z}_q \]
\[t_{i,1} \leftarrow g_1^{\alpha_1} h_1^{\alpha_2} \]
\[t_{i,2} \leftarrow g_2^{\alpha_1} h_2^{\alpha_2} g_1^{r} \]
\[t_1 \leftarrow \Pi t_{i,1} ; t_2 \leftarrow \Pi t_{i,2} \]
\[c \leftarrow H(t_1, t_2, \Pi \text{pk}_i, m) \]
\[s_i \leftarrow r + c \cdot sk_i + \Sigma s_i \text{ mod q} \]
\[s \leftarrow \Sigma s_i \text{ mod q} \]
\[\alpha_1 \leftarrow \Sigma \alpha_{i,1} \text{ mod q} \]
\[\alpha_2 \leftarrow \Sigma \alpha_{i,2} \text{ mod q} \]
\[\sigma \leftarrow (t_1, t_2, s, \alpha_1, \alpha_2) \]

KAgg: Check PoPs, \(\text{apk} \leftarrow \Pi \text{pk}_i \)

Verify: \(c \leftarrow H(t_1, t_2, \text{apk}, m) \)

Check \(t_1 = g_1^{\alpha_1} h_1^{\alpha_2} \)

and \(t_2 = g_2^{\alpha_1} h_2^{\alpha_2} g_1^{s} \text{ apk}^{-c} \)

Efficiency

Sign: \(1 \text{ mexp}^2 + 1 \text{ mexp}^3\)
plain Schnorr: 1 exp

Verify: \(3 \text{ mexp}^2\)
plain Schnorr: 1 mexp²

Signature size: 160 B
plain Schnorr: 64 B
Application to “plain” Schnorr and CoSi

Query on m_1

\[
\begin{align*}
 r_1 &\leftarrow_R Z_q \\
 t_1 &\leftarrow g^{r_1} \\
 c_1 &\leftarrow H(t_1, m_1) \\
 s_1 &\leftarrow r_1 + c_1 \cdot sk \\
 \sigma_1 &\leftarrow (c_1, s_1)
\end{align*}
\]

Query on m_2

\[
\begin{align*}
 r_2 &\leftarrow_R Z_q \\
 t_2 &\leftarrow g^{r_2} \\
 c_2 &\leftarrow H(t_2, m_2) \\
 s_2 &\leftarrow r_2 + c_2 \cdot sk \\
 \sigma_2 &\leftarrow (c_2, s_2)
\end{align*}
\]

Forgery on m_3

\[
\begin{align*}
 t_3 &\leftarrow t_1 \cdot t_2 \\
 c_3 &\leftarrow H(t_3, m_3) \text{ such that } c_3 = c_1 + c_2 \\
 s_3 &\leftarrow s_1 + s_2 \\
 \sigma_3 &\leftarrow (c_3, s_3)
\end{align*}
\]
Lessons learned

• Provable security! 😐
• Review security proofs! 😐

• Proofs can be subtle, especially forking
• Tool support for checking proofs?
• Don’t drop steps that look like they’re “just to make the proof work”

• Provable security is not perfect, but best tool we have
Application to “plain” Schnorr and CoSi

\[t_1 \leftarrow g^{r_1} \]
\[\ldots \]
\[t_{k-1} \leftarrow g^{r_{k-1}} \]
\[t^* \leftarrow t_1 \cdot \ldots \cdot t_{k-1} \]

\[S_1 \leftarrow r_1 + c_1 \cdot s^k \mod q \]
\[S_{k-1} \leftarrow r_{k-1} + c_{k-1} \cdot s^k \mod q \]
\[C_1 + \ldots + C_{k-1} = c^* \mod q \]
\[S^* \leftarrow S_1 + \ldots + S_{k-1} \mod q \]

\[pk^* = g^{sk^*} \]
\[g^{s^*} = g^{\sum s_i} = g^{\Sigma r_i + \sum c_i \cdot s^k} = \prod t_i \cdot pk^* c^* \]
\[t \cdot pk^* c^* \]
Multi-signatures from discrete logarithms

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Rounds</th>
<th>Rogue Keys</th>
<th>Signature simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN [BN06]</td>
<td>3</td>
<td>per-signer challenges</td>
<td>preliminary round $H(t_i)$</td>
</tr>
<tr>
<td>BCJ-1 [BCJ08]</td>
<td>2</td>
<td>per-signer challenges</td>
<td>homomorphic equivocable (HE) com.</td>
</tr>
<tr>
<td>BCJ-2 [BCJ08]</td>
<td>2</td>
<td>proofs of possession</td>
<td>homomorphic equivocable (HE) com.</td>
</tr>
<tr>
<td>MWLD [MWLD10]</td>
<td>2</td>
<td>per-signer challenges</td>
<td>witness indistinguishable keys</td>
</tr>
<tr>
<td>CoSi [STV+16]</td>
<td>2</td>
<td>proofs of possession</td>
<td>(no security proof)</td>
</tr>
<tr>
<td>MuSig1 [MPSW18]</td>
<td>2</td>
<td>MuSig key aggregation</td>
<td>DL oracle in one-more DL assumption</td>
</tr>
<tr>
<td>mBCJ (this work)</td>
<td>2</td>
<td>proofs of possession</td>
<td>per-message HE commitments</td>
</tr>
<tr>
<td>BDN-DL, MuSig2</td>
<td>3</td>
<td>MuSig key aggregation</td>
<td>preliminary round $H(t_i)$</td>
</tr>
<tr>
<td>[BDN18, MPSW19]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDN-DLpop [BDN18]</td>
<td>3</td>
<td>proofs of possession</td>
<td>preliminary round $H(t_i)$</td>
</tr>
<tr>
<td>BLS-PoP [RY07]</td>
<td>1</td>
<td>proofs of possession</td>
<td>pairings</td>
</tr>
<tr>
<td>BDN-P [BDN18]</td>
<td>1</td>
<td>MuSig key aggregation</td>
<td>pairings</td>
</tr>
</tbody>
</table>