
On the Security of
Two-Round Multi-Signatures

Manu Drijvers1, Kasra Edalatnejad2, Bryan Ford2, Eike Kiltz3,
Julian Loss3, Gregory Neven1, Igors Stepanovs4

1 DFINITY, 2 EPFL , 3 Ruhr-University Bochum, 4 UCSD

Multi-signatures

↔	

Verify((pk1,pk2,pk3),	m,	σ)	=	1	

Every	signer	must	agree	to	sign	m	

Goal: 	short	signature	 	 	 	(preferably	≈	single	signature,	
	efficiently	verifiable 		 		definitely	<<	N	signatures)	

(pk1,sk1)	←	Kg	

Sign((pk1,pk2,pk3),	sk1,	m)	
→	σ	

(pk2,sk2)	←	Kg	

Sign((pk1,pk2,pk3),	sk2,	m)	
→	σ	

(pk3,sk3)	←	Kg	

Sign((pk1,pk2,pk3),	sk3,	m)	
→	σ	

↔	

Multi-signatures

↔	

Key	aggregation:		apk	←	KAgg(pk1,pk2,pk3)	

Verify(apk,	m,	σ)	=	1	

Every	signer	must	agree	to	sign	m	

Goal: 	short	signature	 	 	 	(preferably	≈	single	signature,	
	efficiently	verifiable 		 		definitely	<<	N	signatures)	

(pk1,sk1)	←	Kg	

Sign((pk1,pk2,pk3),	sk1,	m)	
→	σ	

(pk2,sk2)	←	Kg	

Sign((pk1,pk2,pk3),	sk2,	m)	
→	σ	

(pk3,sk3)	←	Kg	

Sign((pk1,pk2,pk3),	sk3,	m)	
→	σ	

↔	

Applications of multi-signatures
•  Improve	Bitcoin	throughput	/	reduce	blockchain	size	

•  ”multisig”	transactions	as	small	as	other	transactions	
•  Reduce	size	of	multi-input	multi-output	transactions	

• Collective	signing	by	co-thorities	(e.g.,	CoSi	[STV+16])	

• Distributed	random	beacons	(e.g.,	RandHound	[SJK+17])	

• Block	certification	in	proof-of-stake	/	permissioned	
blockchains	

•  e.g.,	Dfinity,	OmniLedger,	Ziliqa,	Harmony,	Algorand,	…	
	

Existing multi-signatures

Schnorr signatures

pk	=	gsk	

r	←R	Zq	
t	←	gr	

	
c	←	H(t,m)	

s	←	r	+	c	·	sk	mod	q	
σ	←	(c,	s)	

	
Verification:	

c	=	H(gs	·	pk-c	,	m)	

Efficient	&	Provably	secure	
•  under	discrete-log	assumption	
•  in	the	random-oracle	model:	

model	hash	function	as	ideal	
random	function	

“Plain” Schnorr multi-signatures

↔	

pk1	=	gsk1	

r1	←R	Zq	
t1	←	gr1	

t	←	t1·t2·t3	
c	←	H(t,m)	

s1	←	r1	+	c·sk1	mod	q	

s	←	s1+s2+s3	mod	q	
σ	←	(c,	s)		

pk2	=	gsk2	

r2	←R	Zq	
t2	←	gr2	

t	←	t1·t2·t3	
c	←	H(t,m)	

s2	←	r2	+	c·sk2	mod	q	

s	←	s1+s2+s3	mod	q	
σ	←	(c,	s)		

pk3	=	gsk3	

r3	←R	Zq	
t3	←	gr3	

t	←	t1·t2·t3	
c	←	H(t,m)	

s3	←	r3	+	c·sk3	mod	q	

s	←	s1+s2+s3	mod	q	
σ	←	(c,	s)		

↔	

↔	

↔	

apk	←	pk1	·	pk2	·	pk3	
Check			c		=		H(gs	·	apk-c	,	m)	

Problem 1: Rogue-key attacks

pk1	=	gsk1	 pk2	=	gsk2	/	pk1	

apk	=	pk1	·	pk2	=	gsk2	

can	compute	signatures	under	apk	by	himself!	

Known	remedies:	
• Per-signer	challenges	[BN06]	
• Proofs	of	possession	added	to	pk	[RY07,BCJ08]	
• MuSig	key	aggregation:		apk	←	Π	pkiH(pki,	{pk1,…,pkN}		[MPSW18]	

Problem 2: Signature simulation

pk1	

c,	s1	←R	Zq	
t1	←	gs1	pk1-c	

t	←	t1·t2	
c	←	H(t,m)	

pk2	

←		t2	
Standard	Schnorr	proof	technique	does	not	work	

(cannot	program	random	oracle,		
because	adversary	knows	t	before	simulator	does)	

→		t1	

Multi-signatures from discrete logarithms
Scheme Rounds Rogue	keys Signature	simulation

BN	[BN06] 3 per-signer	challenges preliminary	round	H(ti)		
BCJ - 1	[BCJ08] 2 per-signer	challenges homomorphic	equivocable	(HE)	

commitments BCJ - 2	[BCJ08] 2 proofs	of	possession

MWLD	[MWLD10] 2 per - signer	challenges witness-indinstinguishable	keys
CoSi [STV+16] 2 proofs	of	possession (no	security	proof)
MuSig - 1	[MPSW18a] 2 MuSig key	aggregation DL	oracle	in	one-more	DL	assumption

mBCJ [this	work] 2 proofs	of	possession per-message	HE	commitments
BDN-DL,	MuSig-2
[BDN18,	MPSW19]

3 MuSig key	aggregation preliminary	round	H(ti)

BDN-DLpop	[BDN18] 3 proofs	of	possession preliminary	round	H(ti)
BLS	[Bol03,RY07] 	1 	proofs	of	possession

BDN-P	[BDN18] 1 MuSig	key	aggregation pairings	
pairings	

Attacks and non-provability

Wagner’s generalized birthday attack
[W02]
k-sum	problem	in	Zq:	
Given	k	lists	of	random	elements	in	Zq	
Find	(c1,…,ck)	in	lists	such	that		c1	+	…	+	ck	=	0	mod	q	
	
	
	
	
	
	

Subexponential	solution:	Solved	for	k	=	2√n	in	time	O(22√n)	where	n	=	|q|.	

c1

…
	

List	1	

c2

…
	

List	2	

ck
…

	

List	k	…	

Application to “plain” Schnorr and CoSi

		
	
	
	
	
	
	

		
	
	
	
	
	
	

…	

H(*,m)

H(*,m)

H(*,m)

…
	

H(*,m)

H(*,m)

H(*,m)

…
	

-H(t*,m1)

-H(t*,m2)

-H(t*,mL)

…
	

t1	←	gr1	 tk-1	←	grk-1	 t*	←	t1·…·tk-1			
	
	
	
	
	
	
	
	
	

c1	+	…	+	ck-1	=	c*	

•  sk	only	appears	in	signature	in	s	=	r	+	c	*sk,	with	c	=	H(gr,	m)	
•  If	we	have	signatures	with	c1	+	…	+	ck-1	=	H(t*,	m),	we	can	

forge	a	signature	on	m*!	

Attacks on two-round multi-signature
schemes
• Attack	applies	to	all	previously*	known	two-round	schemes	

•  BCJ-1	and	BCJ-2	
•  MWLD	
•  CoSi	
•  MuSig-1	

•  Sub-exponential	but	practical		
(for	256-bit	q)	
•  15	parallel	signing	queries:	262	steps	
•  127	parallel	signing	queries:	245	steps	

• Prevented	by	increasing	|q|	
	…any	hope	for	provable	(asymptotic)	security?	

*	before	first	version	of	this	paper	

Non-provability of two-round schemes
Theorem:	One-more	discrete	logarithm	problem	is	hard	

	
BCJ/MWLD/CoSi/MuSig-1	cannot	be	proved	secure		

under	one-more	discrete	logarithm	
(through	algebraic	black-box	reductions	in	random-oracle	model)	

	
Essentially	excludes	all	known	proof	techniques	(including	rewinding)	

under	likely	assumptions.	
	

Subtle	flaws	in	proofs	of	BCJ/MWLD/MuSig-1	
(CoSi	was	never	proved	secure)	

	
⇒

	

Secure schemes

Modified BCJ multi-signature
•  2	round,	secure	under	discrete	logarithm,	same	efficiency	as	BCJ	
•  Large	scale	deployment:	

•  16,384	signers	generate	signature	within	2	seconds	
•  20%	bandwidth,	75%	computation	increase	compared	to	CoSi	(plain	schnorr)	

Other secure schemes
•  Three-round	scheme	[BDN18,	MPSW19]	

•  Secure	under	discrete-log	assumption	

	
• Non-interactive	scheme	from	BLS	[BLS01,Bol03,RY07,BDN18]	

•  Smaller	signatures	
•  Non-interactive	aggregation	
•  Requires	bilinear	pairings	

Lessons learned

Lessons learned
• Cryptographic	schemes	need	security	proofs	

•  Don’t	drop	steps	that	look	like	they’re	“just	to	make	the	proof	work”	

•  Security	proofs	must	be	reviewed	
•  Proofs	can	be	subtle,	especially	with	rewinding	arguments	
•  Tool	support	for	checking	proofs?	

• Provable	security	is	not	perfect,	but	best	tool	we	have	

Thank you!

ia.cr/2018/417

References
[BN06]	Bellare,	Neven:	Multi-signatures	in	the	plain	public-Key	model	and	a	general	forking	lemma.	CCS	2006	

[BCJ08]	Bagherzandi,	Cheon,	Jarecki:	Multisignatures	secure	under	the	discrete	logarithm	assumption	and	a	generalized	forking	lemma.	CCS	2008	

[MWLD10]	Ma,	Weng,	Li,	Deng:	Efficient	discrete	logarithm	based	multi-signature	scheme	in	the	plain	public	key	model.	Design,	Codes	and	Cryptography	2010	

[STV+16]	Syta	et	al.:	Keeping	Authorities	"Honest	or	Bust"	with	Decentralized	Witness	Cosigning.	IEEE	S&P	2016	

[MPSW18a]	Maxwell,	Poelstra,	Soerin,	Wuille:	Simple	Schnorr	Multi-Signatures	with	Applications	to	Bitcoin.	ePrint	report	/2018/068/20180118:124757	

[MPSW19]	Maxwell,	Poelstra,	Soerin,	Wuille:	Simple	Schnorr	Multi-Signatures	with	Applications	to	Bitcoin.	Design,	Codes	and	Cryptography	2019	

[BDN18]	Boneh,	Drijvers,	Neven:	Compact	Multi-signatures	for	Smaller	Blockchains.	ASIACRYPT	2018	

[RY07]	Ristenpart,	Yilek:	The	Power	of	Proofs-of-Possession:	Securing	Multiparty	Signatures	against	Rogue-Key	Attacks.	EUROCRYPT	2007	

	

	

Modified BCJ multi-signatures

(g2,h1,h2)	← H'(m)	
r,α1,α2	←R	Zq	
ti,1	←	g1α1	h1α2	

ti,2	←	g2α1	h2α2	g1r	
t1	←	Πti,1	;	t2	←	Πti,2	
c	←	H(t1,t2,Πpki,m)	

si	←	r	+	c·ski	+	Σsi	mod	q	
s	←	Σsi	mod	q	

α1	←	Σαi,1	mod	q	
α2	←	Σαi,2	mod	q	
σ	←	(t1,t2,s,α1,α2)		

pki	=	gski	+	PoP	

ti,1,	ti,2	

si,	αi,1,	αi,2	

KAgg:	Check	PoPs,	apk	←	Πpki	

Verify:		c	←	H(t1,t2,apk,m)	
Check		t1	=	g1α1	h1α2	

and	t2	=	g2α1	h2α2	g1s	apk-c		
	

Efficiency	
Sign:	1	mexp2	+	1	mexp3	
plain	Schnorr:	1	exp	
Verify:	3	mexp2			

plain	Schnorr:	1	mexp2	
Signature	size:	160	B			
plain	Schnorr:	64	B	

Application to “plain” Schnorr and CoSi

Query	on	m1	

r1	←R	Zq	
t1	←	gr1	

c1	←	H(t1,m1)	
s1	←	r1	+	c1·sk	
σ1	←	(c1,	s1)		
	

Query	on	m2	

r2	←R	Zq	
t2	←	gr2	

c2	←	H(t2,m2)	
s2	←	r2	+	c2·sk	
σ2	←	(c2,	s2)		
	

Forgery	on	m3	

	
t3	←	t1	·	t2		

c3	←	H(t3,m3)	such	that	c3	=	c1	+	c2	
s3	←	s1	+	s2	
σ3	←	(c3,	s3)		
	

Lessons learned
• Provable	security!	
• Review	security	proofs!	

• Proofs	can	be	subtle,	especially	forking	
•  Tool	support	for	checking	proofs?	
• Don’t	drop	steps	that	look	like	they’re	“just	to	make	the	proof	work”	

• Provable	security	is	not	perfect,	but	best	tool	we	have	

• Provable	security!	🤔	
• Review	security	proofs!	🤔	

Application to “plain” Schnorr and CoSi

		
	
	
	
	
	
	

s1	←	r1	+	c1·sk*	mod	q	

t*	←	t1·…·tk-1	
	
	
	
	
	
	
	
	
	
	

s*	←	s1	+	…	+	sk-1	mod	q	

		
	
	
	
	
	
	

sk-1	←	rk-1	+	ck-1·sk*	mod	q	

…	

H(*,m)

H(*,m)

H(*,m)

…
	

H(*,m)

H(*,m)

H(*,m)

…
	

-H(t*,m1)

-H(t*,m2)

-H(t*,mL)

…
	

		

gs*		=		gΣsi		=		gΣri	+	Σci·sk*	=	Πti	·	pk*c*		=		t	·	pk*c*	

t1	←	gr1	 tk-1	←	grk-1	 t*	←	t1·…·tk-1			
	
	
	
	
	
	
	
	
	

c1	+	…	+	ck-1	=	c*	mod	q	

pk*	=	gsk*	

Multi-signatures from discrete logarithms
Scheme	 Rounds	 Rogue	Keys	 Signature	simulation	

BN	[BN06] 3	 per-signer	challenges preliminary	round	H(ti)		

BCJ-1	[BCJ08]	 2	 per-signer	challenges	 homomorphic	equivocable	(HE)	com.	

BCJ-2	[BCJ08]	 2	 proofs	of	possession	 homomorphic	equivocable	(HE)	com.	

MWLD	[MWLD10]	 2	 per-signer	challenges	 witness	indistinguishable	keys	

CoSi	[STV+16]	 2	 proofs	of	possession	 (no	security	proof)	

MuSig1	[MPSW18]	 2	 MuSig	key	aggregation	 DL	oracle	in	one-more	DL	assumption	

mBCJ	(this	work)	 2	 proofs	of	possession	 per-message	HE	commitments	

BDN-DL,	MuSig2		
[BDN18,	MPSW19]	

3	 MuSig	key	aggregation	 preliminary	round	H(ti)		

BDN-DLpop	[BDN18]	 3	 proofs	of	possession	 preliminary	round	H(ti)		

BLS-PoP	[RY07]	 1	 proofs	of	possession	 pairings	

BDN-P	[BDN18]	 1	 MuSig	key	aggregation	 pairings	

