Blind Certificate Authorities

Liang Wang¹, Gilad Asharov², Rafael Pass², Thomas Ristenpart², abhi shelat³

¹ Princeton University

² Cornell Tech

³ Northeastern University

Motivation

Certificate Authorities (CA) issue certificates

Certificates bind public keys to identities

The user must reveal true identity to the CA during identity validation

Identity is sensitive

CA: single point of privacy failure

alice@domain.com: cert1

bob@gmail.com: cert2

Can we make CA "blind"?

Main challenge:

Validate an identity while not learning it

YES!!!

Contributions

Secure Channel Injection (SCI):

- A primitive allows a party to inject a small amount of information into a secure connection between two parties
- (SCI-TLS) An efficient, special-purpose MPC protocol for two parties to compute a TLS record

Anonymous Proof of Account Ownership (PAO):

 Validate one owns some email accounts from a given organization without knowing which account

BlindCA:

 Validate ownership of an account alice@domain.com and issue a X.509 certificate binding "alice" to a public key, without learning the account and the key

Email is the most common identity

Conventional email verification

Prove account ownership by showing the ability to READ an email from an account

Secure Channel Injection (SCI)

Secure Channel Injection (SCI)

Secure Channel Injection (SCI)

Alice: Learns nothing about M*

Bob: Doesn't know M* is from Carol

Carol: Learns nothing about other messages from Alice

Conventional email verification

Prove account ownership by showing the ability to READ an email from an account

Anonymous proof of account ownership (PAO)

Goal: Validate Alice owns some email accounts from domain.com

Prove account ownership by showing the ability to SEND an email from an account

PAO use cases

Anonymous PAO needs to use MPC to compute TLS records

For a 512-byte email and 16-byte challenge

Generic MPC: 32 AES and 8 SHA256 operations → 0.94M+ AND gates

TLS AES-CBC with SHA256

Merkle-Damgård Construction

Two-party SHA: "Outsource" SHA computation

Two-party AES CBC

Anonymous PAO needs to use MPC to compute TLS records

For a 512-byte email and 16-byte challenge

- Generic MPC: 32 AES and 8 SHA-256 operations → 0.94M+ AND gates
- Our protocol: 4 AES operations → 27K+ AND gates; NO MPC for HMAC

TLS AES-CBC mode

A simplified SMTP session

BlindCA: TLS record as commitment

The SMTP AUTH message contains email account (user identity)

BlindCA: Anonymous PAO

BlindCA: Anonymous PAO

Prover produces a ZKBoo proof

CA: Shares a certificate template with the user

All fields are known except for subject and public key

Issuer: BlindCA
Subject: ?@abc
Public key: ?
Version: ...

User: Fills in missing info, produces the hash of the cert; Generates a zkboo proof to show the knowledge of:

- The email account (e1) and public key for forming the certificate
- The opening of the TLS commitment:
 - o secret keys, email account (e2) and password
- e1 = e2

Single Boolean circuit!

CA verifies proofs and signs

Challenge	Commitment	•••
abc	eee	•••
123	fff	•••
•••	•••	•••

BlindCA overhead

	Loc 1 (No Tor)	Loc2 (No Tor)	Loc1 (With Tor)
2P-HMAC	0.01	0.03	0.31
2P-CBC	0.20	0.35	0.36
PAO	0.76	1.68	4.31
SMTP Baseline	0.31	0.77	3.33

The median time (seconds) to complete the 2P-HMAC, 2P-CBC (without offline), PAO (without offline) and normal SMTP-TLS

PAO Test with Gmail, UW-Madison, and Cornell SMTP servers:

o PAO (without offline): 1.01s, 1.64s, 1.53s

Without PAO: 0.44s, 0.94s, 0.79s

BlindCA proof (136 ZKBoo proofs):

Size: 85M+

o Generation: 2.9s

Verification: 2.3s

Session duration is not a good detector

The distribution of the SMTP durations is long-tailed (based on 8K+ SMTP-TLS sessions).

Summary

- We design the first "blind" CA: a CA that can validate identities and issue certificates without learning the identity
 - SCI for TLS AES-CBC and AES-GCM (see paper)
- Participation privacy: does not disclose to any party the identities of users
- Please see our paper for more details (security proofs, security analysis, etc.)!

Thank you!

Title