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Deep Learning Model Publishing 
• Applications: speech, image recognition; natural language processing;  

autonomous driving 
•  A Key factor for its success: large amount of data 

• Privacy leakage Risks by Applications 
•  Cancer diagnosis, Object detection in Self driving car … 

• Privacy leakage Risks by attacks 
•  Membership inference attacks[Reza Shokri et al, SP’17] 
•  Model inversion attacks[M. Fredrikson et al, CCS’15] 
•  Backdoor (intentional) memorization [C Song et al. CCS’17] 

 

3 



Model Publishing of Deep Learning 
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Data Privacy in Model Publishing  
of Deep Learning 

5 

photos, documents, 
internet activities, 

business 
transactions health 

records 

training 
dataset 

w12 w13 
Model 

Publishing 
Millions of 

parameters 

The training process can encode individual 
information into the model parameters  
e.g., “Machine Learning Models that Remember Too Much”， 
by C Song et al. CCS’17 
 

on cloud ML as a Service  

to mobile devices 
for local inference 

Model zoo 
to public model repositories 
such as 

Iterative Training 
Deep Neural Networks (DNN) 



Data Privacy in Model Publishing  
of Deep Learning 

6 

photos, documents, 
internet activities, 

business 
transactions health 

records 

training 
dataset 

w12 w13 
Model 

Publishing 
Millions of 

parameters 

on cloud ML as a Service  

to mobile devices 
for local inference 

Model zoo 
to public model repositories 
such as 

Iterative Training 
Deep Neural Networks (DNN) 



Proposed Solution 

• Deep Learning Model Publishing with Differential Privacy 

• Related Work 
•  Privacy-Preserving Deep Learning [Reza Shokri et al, CCS’15] 

•  Deep Learning with Differential Privacy [M. Abadi, et al . CCS’16] 
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Differential Privacy Definition 
• The de facto standard to guarantee privacy 

•   Cynthia Dwork, Differential Privacy: A Survey of Results, TAMC, 2008 

• A randomized algorithm M: D -> Y satisfies (ε, δ)-Differential 
Privacy, if  for any two neighboring dataset D and D’ which differs in 
only one element, for any subset 𝑆⊂𝑌 

• For protecting privacy, ε is usually a small value (e.g., 0<ε<1), 
such that two probability distributions are very close. It is difficult 
for the adversary to distinguish D and D’ by observing an output 
of M.  
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∀S:  Pr[M(D)∊S] ≤  𝑒↑ε  · Pr[M(D′)∊S] + δ 
 



Differential Privacy Composition 
• Composition： 

 For ε-differential privacy,  If M1, M2, ..., Mk are algorithms that 
access a private database D such that each Mi satisfies εi -
differential privacy, then running all k algorithms sequentially 
satisfies ε-differential privacy with ε=ε1+...+εk 

• Composition rules help build complex algorithms using basic 
building blocks 
•  Given total ε, how to assign εi for each building block to achieve the best 

performance 
•  The ε is usually referred to as privacy budget. The assignment of εi is a 

budget allocation. 
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Differential Privacy in  
Multi-Step Machine Learning  

• With N steps of ML algorithm A, the privacy budget ε can be 
partitioned into N smaller εi such that ε=ε1+...+εN 

• Partitioning of ε among steps: 
•  Constant:  ε1=...=εN 

•  Variable 
•  Static approach which defines different εi for each step at configuration 

•  dynamic: different εi  for each step, changes with steps 
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Stochastic Gradient Descent  
in Iterative Deep Learning 
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Training dataset 
Data  
batch 

( 𝑥↓1 , 𝑥↓2 ,…, 𝑥↓𝐵 )

Compute 
Average loss 
and gradient 
𝐿= 1/𝐵 ∑𝑖=1↑𝐵▒𝐿( 
𝑥↓𝑖 )  

Update 
network 

parameters 
𝑤↓𝑖𝑗 = 𝑤↓𝑖𝑗  − 𝛼𝜕𝐿/
𝜕𝑤↓𝑖𝑗   

A training iteration 

(1) DNN training takes a large number of steps (#iterations or #epochs) 
•  Tensorflow cifar10 tutorial: cifar10_train.py achieves ~86% accuracy after 100K iterations 
•  For ResNet model training on ImageNet dataset, as reported in the paper [Kaiming He 

etc, CVPR’15], the training runs for 600,000 iterations.  
 
(2) Training dataset is organized into a large number of mini-batches of equal size for 
massive parallel computation on GPUs with two popular mini-batching methods: 
•  Random Sampling 
•  Random Shuffling  



Differentially Private Deep Learning: 
Technical Challenges 

• Privacy budget allocation over # steps 
•  Two proposed approaches 

•  Constant εi for each of the iterations, configured prior to runtimeà [M. Abadi, et al . 
CCS’16] 

•  Variable εi : Initialized with a constant εi for each iteration and dynamically 
decaying the value of εi at runtime à this paper 

• Privacy cost accounting 
•  Random sampling 

•  Moments accountant à M. Abadi, et al . CCS’16] 

•  Random Shuffling 
•  zCDP based Privacy Loss analysis à this paper 
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Scope and Contributions 
• Deep learning Model Publishing with Differential Privacy  

•  Differentiate random sampling and random shuffling in terms of 
privacy cost 

•  Privacy analysis for different data batching methods 
•  Privacy accounting using extended zCDP for random shuffling  

•  Privacy analysis with empirical bound for random sampling 

•  Dynamic privacy budget allocation over training time 

•  Improve model accuracy and runtime efficiency 
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Data Mini-batching: Random Sampling 
vs. Random Shuffling 
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•  Random sampling with replacement : each batch is generated by 
independently sampling every example with a probability= 
batch_size / total_num_examples 
•  Example: 

•  Random shuffling:  reshuffle dataset every epoch and partition a 
dataset into disjoint min-batches during each reshuffle 
•  Example: 

•  common practice in the implementation of deep learning, available data  
APIs in Tensorflow, Pytorch, etc.  
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(Batch size =3) 1 2 3 4 5 6 7 8 9 4 7 1 6 2 3 8 9 5 

1 2 3 4 5 6 7 8 9 1 3 5 1 2 974 3 (probability q = batch size / 9 = 1/3) 



Data Minibatching: Random Sampling 
vs. Random Shuffling 
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Batching method  output instances in one epoch 
tf.train_shuffle_batch [2 6], [1 8], [5 0], [4 9], [7 3] 
tf.estimator.inputs.numpy_inpunt_fn [8 0], [3 5], [2 9], [4 7], [1 6] 
Random sampling with q=0.2 [ ], [0 6 8], [4], [1], [2 4] 

Dataset:  [0,1,…,9],    batch_size=2 



Data Minibatching: Random Sampling 
vs. Random Shuffling 
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Moments accountant method developed for random 
sampling cannot be used to analyze privacy cost  and 
accounting for random shuffling! 



Differential Privacy accounting for 
random shuffling 

•  Developing privacy accounting analysis for random shuffling based on zCDP  
•  CDP is relaxation of (ε, δ)-Differential Privacy, developed by Cynthia et al , 

Concentrated Differential Privacy. CoRR abs/1603.01887 (2016) 
•  zCDP is variant of CDP, developed by Mark Bun et al. Concentrated Differential 

Privacy: Simplifications, Extensions, and Lower Bounds , TCC 2016-B. 
 

(1)  Within each epoch, each iteration satisfies 𝜌–zCDP by applying Gaussian 
mechanism with the same noise scale√�1/2𝜌  
•  Our analysis shows under random shuffling, the whole epoch still satisfies 𝜌–zCDP  

(2) Employing dynamic decaying noise scale for each epoch, and using the 
sequential composition for zCDP among T epochs: 
•  a sequential composition of T number of 𝜌↓𝑖 –zCDP  mechanisms  to satisfy (∑ 𝜌↓𝑖 ) –

zCDP 

17 



CDP based Privacy Loss analysis for 
random shuffling 

Random shuffling in an epoch 
 
 

 
 
 

the epoch satisfies max┬i ( 𝜌↓𝑖 )-zCDP. Our implementation uses the same 𝜌↓𝑖 =𝜌 
for each iteration in an epoch, thus the epoch satisfies 𝜌-ZCDP. 

Randomly shuffled dataset is partitioned to K disjoint data batches 
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CDP based Privacy Loss analysis for 
random shuffling 

Random shuffling in multiple epochs 
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T-th epoch (𝜌↓𝑇 -zCDP)    

Because each epoch accesses the whole dataset,  among epochs the privacy loss 
follows linear composition.  The training of T epochs satisfies ∑𝑖↑▒𝜌↓𝑖  -zCDP 



CDP based Privacy Loss analysis for 
random sampling 

•  zCDP cannot capture the privacy 
amplification effect of random sampling 
•  Caused by the linear α-Renyi divergence 

constraint over all 𝛼∈(1, ∞) in the definition 

• Only consider the constraint on a limited 
range of  𝛼∈(1, 𝑈_𝛼)     (𝑈_𝛼< ∞) 

• We find a heuristic bound within a limited 
range of 𝛼 and convert it to (ε, δ)-Differential 
Privacy in an analytical way(Details in 
Theorem 3) 

Privacy amplification 
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Dynamic privacy budget allocation 

• Under fixed privacy budget, dynamically allocate privacy 
budget among epochs to optimize model accuracy 
•  Pre-defined schedules 

•  Adaptive schedule based on public validation dataset 
•  Public data set does not involve extra privacy cost 
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Dynamic privacy budget allocation 

• Pre-defined four different scheduling algorithms to decay 
the noise level 

• The εi value is determined using the decay function at 
runtime dynamically 
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Dynamic privacy budget allocation 

• Adaptive schedule based on public validation dataset 
•  Periodically check the model accuracy on the validation dataset 

during training process 
•  Reduce the noise level when the validation accuracy stops 

improving 
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Evaluation 
• Evaluating dynamic privacy budget allocation on MNIST 

•  Compared with the approach using constant noise scale during 
training time 

•  The decay functions have decay parameters to decide how the 
noise scale changes with the epochs 

•  The decay parameters are hyperparameters prespecified by the 
users. 

 
The change of noise scale  during training 

24 



Evaluation 

• Evaluating dynamic privacy budget allocation on MNIST 
•  Dynamic privacy budget allocation improves model accuracy 
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Evaluation 
• Comparing Privacy Accounting Approaches 

•  Convert to (ε, δ)-Differential Privacy 

1.  Random shuffling incurs higher privacy 
loss than random sampling 

2.  Heuristic bound produces close result to 
the MA method, but  it is easier to 
compute  
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Summary 
• Privacy Loss Analysis against Different Data Batching 

Methods 

• Dynamic privacy budget allocation 
• Source Code: 

https://github.com/git-disl/DP_modelpublishing 

• Refined Version on Arxiv : https://arxiv.org/abs/1904.02200 

Thank you! 
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Concentrated Differential Privacy (CDP) 

• Recently developed by Dwork and Rothblum to focus on the 
cumulative privacy loss for a large number of computations and 
provide a sharper analysis tool. 
•  Privacy Loss as subgaussian random variable 
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Cynthia Dwork, Guy N. Rothblum, Concentrated Differential Privacy. CoRR abs/1603.01887 (2016) 
 



Zero-Concentrated  
Differential Privacy (zCDP) 

• Zero-CDP (zCDP) : A randomized mechanism A is ρ-zCDP if for any 
two neighboring database D and D' that differ in only a single entry 
and all 𝛼∈(1, ∞) 

 
•  The Gaussian mechanism for f with noise 𝑁(0, Δ↓𝑓↑2  𝜎↑2 𝐼) satisfies (1/2
𝜎↑2  )-zCDP. 

• Linear Composition: A sequential composition of K number of         
𝜌–zCDP  mechanisms satisfies (𝐾𝜌) -zCDP 

α-Renyi divergence 
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Mark Bun , Thomas Steinke 
Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds , TCC 2016-B. 
 
 
 



Privacy Preserving Deep Learning 

• Privacy-Preserving Deep Learning [Reza Shokri et al, CCS’15] 
•  N party federated learning with N local private data respectively 

•  Local model training on local data 

•  exchange of model parameters instead of local data 

• Deep Learning with Differential Privacy [M. Abadi, et al . CCS’16] 
•  Differentially private Stochastic Gradient Descent (DP-SGD) 

•  Assuming random sampling based batching and propose moment 
accountant method for privacy loss tracking 
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