v d
[)
lreia— B° Vigosoft !
inventeurs du monde numérique . m:&?%férf-ﬁigamh - Inria Resea rc h !

Formally Verified
Cryptographic Web Applications
in WebAssembly

Jonathan Protzenko Microsoft Research
Benjamin Beurdouche INRIA
Denis Merigoux INRIA
Karthik Bhargavan INRIA

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 22%, 2019 1/22

The Web beyond the Web

The Web environment has become the choice target for
deploying applications.

Think: websites, desktop apps (Electron), server apps
(node.js), browser addons...

How about security-sensitive applications, such as: password
managers, secure messengers?

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 22, 2019 2/22

Life is hard for secure web apps

Application developers are at a loss for secure toolchains
targeting the Web runtime.

e custom cryptographic schemes
¢ ad-hoc protocols

unverifiable app logic

hostile target environment (JavaScript).

(Larger) Claim: the JavaScript toolchain is inadequate for
Web-based security-sensitive applications.

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 225¢, 2019 3/22

An F* to WASM toolchain

We formalize a verified pipeline from Low* to WASM and
implement it in the KreMLin compiler.

Low™(icFp17)

side-channel check

KreMLin

browser, node, ...

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 225¢, 2019 4/22

This work's contributions

» A generic toolchain (formalization and implementation)
to compile F* programs to WebAssembly

e The HACL* verified cryptographic library compiled to
WebAssembly
e A formally verified implementation of Signal, in
WebAssembly
 Verified for functional correctness, memory safety,
side-channel resistance and protocol security
* No performance penalty; same API; ready to integrate

Our running example: Signal

« Signal powers WhatsApp, Messenger, Skype, Signal
This means over 1 billion users

e Allows communicating asynchronously (trend)
¢ Relies on server with limited trust

Generally trust-on-first-use

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 225, 2019 6/22

Our running example: Signal

« Signal powers WhatsApp, Messenger, Skype, Signal
This means over 1 billion users

e Allows communicating asynchronously (trend)
¢ Relies on server with limited trust

Generally trust-on-first-use

Let's start by a quick overview of the protocol.

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 225, 2019 6/22

Alice

Server

Bob

‘L publishes keys

Server Bob

"y

Alice

Server

Bob

, key bundle
L
\

Alice Server Bob

Server

Bob

&

) J/

Alice Server Bob
lDif'ﬁe—Helman ratchet

rk1, Ck1

' m; + keys
\ “hey Bob”

\

Alice Server Bob

e

\

Alice Server Bob
lsymmetric key ratchet

Ck2

' mso 4}
\ “where's the secret stash”

\

Alice Server Bob

Server

Bob

P

Alice

Server

Bob

Server

m; + keys

Bob

"y

Alice

Server

Bob

X3DHl

Server

Bob
Diffie-Helman ratchei

I’k1, Ck1

"y

Alice

Server

Bob

m; = "hey Bob”

"y

Alice

Server

ma

Bob

Server

Bob
symmetric key ratchetl(

Ck2

"y

Alice

Server

Bob

mo = "where's the secret stash”

"y

Alice

Server

etc.

Bob

Server

Bob
Diffie-Helman ratchei

I’kz,Ck3

Server

ms + keys

y
N

"“it's at Oakland”

Bob

"y

Alice

Server

etc.

T

Bob

Signal: a recap

 the protocol is sophisticated

X3DH for session initiation

e double-ratchet for asynchronous communications,
forward secrecy and post-compromise security

« involves non-trivial cryptography (X25519, etc.)

https://signal.org/docs/

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 225¢, 2019 8/22

https://signal.org/docs/

Step 1: a protocol specification

Written in ProVerif (symbolic model). Builds on previous work
(Euro S&P’17).

Guarantees integrity, confidentiality, forward secrecy,
post-compromise security.

Initiator | Responder R

Prior Knowledge: Prior Knowledge:
(i,9") (r.g"),(s,9°)[; (0,9°)]

Initiate(i,g", g°[, 9°]) — (rko):
generate (e, g°)
dho = 0xFF | g* | g | g°°[| g°°]
rko = HKDF(dhy, 0x00%%, “WhisperText”)

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 225, 2019 9/22

Step 1: a protocol specification

Written in ProVerif (symbolic model). Builds on previous work
(Euro S&P’17).

Guarantees integrity, confidentiality, forward secrecy,
post-compromise security.

Initiator | Responder R

Prior Knowledge: Prior Knowledge:
(i,9") (r.g"),(s,9°)[; (0,9°)]

Initiate(/, 9", g°[, g°]) — (rko):
generate (e, g°®)

dho = OxFF | g | g"° | g*°[| g*°]
rko = HKDF(dhy, 0x00%?, “WhisperText”)

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 225, 2019 9/22

Step 2: transcribe specifications to F*

An ML-like language with support for program verification via
SMT automation.

 Specifications include more detail than ProVerif (e.g. tags)
¢ Currently manual; hope to automate it

» Specifications extract to OCaml, for tests — not suitable
for implementations!

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 22, 2019 10/ 22

Step 3a: implement cryptography

We use HACL" for the cryptographic primitives.

HACL* has been integrated in Firefox, WireGuard, mbedTLS,
etc.

Now available on the Web!

Generally useful:

« fills the gap for custom or new primitives (not in
WebCrypto or Node)

 a solution for code that needs synchronous APls
« avoid legacy libraries (OpenSSL on Node).

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 22, 2019 11/22

Step 3b: implement Signal core

We implement all the core operations of the Signal protocol
in Low™.

Low™ is a low-level subset of F* that compiles to C using the
KreMLin compiler.

Low™* has been used by HACL*, EverCrypt, Merkle Trees,
libquiccrypto.

Now a verified implementation of Signal in C and WebAssembly. ‘

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 22, 2019 12 /22

Step 4: compile Low* to WebAssembly

A new, safe, widely supported target for fast, portable
execution. Used primarily in web runtimes but not only.

« isolation guarantees

 basic type safety relying on an operand stack and
structured control flow

* more compiler support every day: LLVM, emscripten,
mono, etc.

Used for video games, AutoCad, large applications...

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 22, 2019 13/22

Our ProVerif to WASM toolchain

We formalize a verified pipeline from ProVerif to WASM and
extend the KreMLin compiler with a WASM backend.

transcribe

ProVerif

refines

compiles via

Low™ impl

KreMLin

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 22, 2019 14/ 22

A direct route from Low* to WASM

We formalize the compilation from Low™* to WASM.

A simple translation (WASM is an expression language) that
eliminates complexity and fits in two paper pages.

Thanks to a new intermediary language in KreMLin, the
compilations rules are compact, auditable and simple.

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 22%, 2019 15/22

A direct route from Low* to WASM

We implement the compilation from Low* to WASM.

The implementation is carefully audited and follows the paper
rules.

« 2,400 lines of OCaml code (total: 11,000)
¢ does not implement any sophisticated optimization
e very regular.

Consequence

A high-assurance compilation toolchain to WASM!

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 225¢, 2019 16/ 22

An indirect route from Low* to WASM

One reason we chose to implement our own toolchain...

Classic route (via Emscripten): Low* — C — WASM
e massive TCB
e no side-channel reasoning

e requires KreMLin to deal with C semantics (un-necessary
transformations)

With only 2,400 extra lines of OCaml, we have greater
confidence.

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 22, 2019 17/ 22

What we prove

Thanks to a combination of techniques, we guarantee:

e memory safety, by virtue of Low*
» functional correctness, by virtue of the specifications

e absence of “classic” side-channel leaks, by construction
and through a dedicated check

In short, we offer a library of core building blocks of the Signal
protocol.

Session and state management, policies to discard old
ratchets, etc. are left to the JavaScript code (need integration
with the browser).

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 22, 2019 18/ 22

Integration

We pass the entire testsuite. The WASM memory is behind a
closure (defensive). We offer the same API.

Shuffled Signal Protocol Test Vectors as Alice
v send prekey message A E10) passes: 1568 failures: 0 duration: 6.09s
v send message B
¥ receive message D
¥ receive message C
v send message E

Standard Signal Protocol Test Vectors as Bob
V¥ receive prekey message A ({5
v receive prekey message B
v send message C
v send message D
¥ receive message E

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 22%, 2019 19/22

Performance (1)

Step F*-WebAssembly | Vanilla Signal
initiate/respond 61.6 ms 74.7 ms
Diffie-Hellman ratchet 217 ms 354 ms
symmetric key ratchet 2.19 ms 3.52ms

Our implementation is faster on many operations than the
original libsignal. (Reason: an asm.js version of curve25519).

For operations involving SHA and AES-CBC, hard to beat
native crypto in WebCrypto.

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 225, 2019 20/ 22

Performance (2)

Primitive (blocksize, rounds) \]:ffrl‘:crzatgn% WASM ‘I;l{:}% Ie-.;;“:l WASM
Chacha20 (4kB, 100k) 28s 41s
SHA2_256 (16kB, 10k) 18s 35s
SHA2_512 (16kB, 10k) 13s 34s
Poly1305_32 (16kB, 10k) 0.15s 04s
Curve25519 (1k) 0.7s 25s
Ed25519 sign (16kB, 1k) 3.0s 100s
Ed25519 verify (16kB, 1k) 30s 10.0s

e simple compilation scheme not always optimal

» 128-bit arithmetic destroys performance, need 32-bit
versions

» low hanging fruits: see chacha20.

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 22, 2019 21/22

Verified Cryptographic Web Applications in WASM

¢ A general pattern any application in a Web context
(desktop, server or browser)

» Offers a solution for crypto libraries: new algorithms,
custom schemes, absence of async, no legacy binaries

* We built software: Signal* + Web-HACL* as a side effect

Please get in touch! https://signalstar.gforge.inria.fr/

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 225, 2019 22 /22

https://signalstar.gforge.inria.fr/

Ye olde backuppe slides

Emscripten Low* — C (KreMLin): OK (ICFP'17)
C — WASM (emscripten): low trust

Emscripten Low* — C (KreMLin): OK (ICFP'17)
C — WASM (emscripten): low trust

KreMLin Low* — WASM (KreMLin): OK (S&P'19)

(* Spec *)

let p = pow2 255 - 19

type elem = n:int { 0 <= n /\ n<p }
let add (x y: elem): elem = (x + y) % p

(* Implem *)
type felem = p:uint64 p { length p =5 }

let fadd (output a b: felem):
Stack unit

(requires (fun h@ -> live hO output /\
live hO a /\ live hO b /\
fadd pre h0.[a] ho.[b])

(ensures (fun hO _ hl ->
modifies 1 output hO hl /\
hl.[output] == add ho.[a] hO.[b]))

concise
(* Spec *) specification

let p = pow2 255 - 19
type elem = n:int { @ <= n /\ n < p }/

let add (x y: elem): elem = (x + y) % p

(* Implem *)
type felem = p:uint64 p { length p =5 }

let fadd (output a b: felem):
Stack unit

(requires (fun h@ -> live hO output /\
live hO a /\ live hO b /\
fadd pre h0.[a] ho.[b])

(ensures (fun hO _ hl ->
modifies 1 output hO hl /\
hl.[output] == add ho.[a] hO.[b]))

(* Spec *)

let p = pow2 255 - 19
type ele L \n<p}
let add | OPtimized (X +y) % p
representation
(* Implem *)

type felem = p:uint64 p N length p =5 }

let fadd (output a b: felem):
Stack unit

(requires (fun h@ -> live hO output /\
live hO a /\ live hO b /\
fadd pre h0.[a] ho.[b])

(ensures (fun hO _ hl ->
modifies 1 output hO hl /\
hl.[output] == add ho.[a] hO.[b]))

(* Spec *)

let p = pow2 255 - 19

type elem = n:int { 0 <= n /\ n<p }
let add (x y: elem): elem = (x + y) % p

(* Implem *)
type felem = p:uint64 p { length p =5 }

let fadd (output a b: felem):
Stack unit
(requires (fun h@ -> live hO output /\

live hO a /\ live hO b /\

fadd pre h0.[a] ho.[b]) memory safety
(ensures (fun hO _ hl ->

modifies 1 output hO hl /

hl.[output] == add ho.[a] hO.[b]))

(* Spec *)

let p = pow2 255 - 19

type elem = n:int { 0 <= n /\ n<p }
let add (x y: elem): elem = (x + y) % p

(* Implem *)
type felem = p:uint64 p { length p =5 }

let fadd (output a b: felem):
Stack unit
(requires (fun h@ -> live hO output /\

live hO a /\ live ho b /\

fadd_pre ho.[a] ho.[b]) functional specification
(ensures (fun hO _ hl -> (erased)

modifies 1 output hO hl /\

hl.[output] == add ho.[a] hO.[b])f‘;'

(* Spec *)

let p = pow2 255 - 19

type elem = n:int { 0 <=n /\ n<p }
let add (x y: elem): elem = (X + y) % p

(* Implem *)
type felem = p:uint64 p { length p =5 }

let fadd (output a b: felem):
Stack unit

(requires (fun h@ -> live hO output /\
live ho a /\ live hO b /\
fadd pre ho.[a] hO.[b])

(ensures (fun h0 _ hl ->
modifies 1 output hO hl /\
hl.[output] == add h0.[a] hO.[b]))

...compiles to

fadd = func [int32;int32;int32] — |]
local [€o, 01, £ : Int32; 43 : int32; £ : int32].
call get_stack; loop(
// Push dst + 8*i on the stack
get_local ¢y; get_local /3;i32.const 8;i32.binopx; i32.binop+
// Load a + 8%*i on the stack
get_local /;; get_local /3;i32.const 8;i32.binopx; i32.binop+
i64.load
// Load b + 8*i on the stack (elided, same as above)
// Add a.[i] and b.[i], store into dst.[i]
i64.binop+;i64.store
/1 Per the rules, return unit
i32.const 0; drop
/] Increment i; break if i ==
get_local /3;i32.const 1;i32.binop+; tee_local /3
i32.const 5;i32.0p =; br_if
);i32.const 0
store_local / ; call set_stack; get_local ¢

...transcribed to an F* spec ...

let initiate’
(our_identity priv_key: privkey) (* i *)
(our_onetime priv_key: privkey) (* e *)
(their_identity pub_key: pubkey) (* g~ *)
(their signed pub key: pubkey) (* g° *)
(their_onetime pub key: option pubkey) (* g°, optional *)

: Tot (lbytes 32) = (* output: rko *)
let dhl = dh our_identity priv_key their signed pub_key in
let dh2 = dh our_onetime priv_key their identity pub key in
let dh3 = dh our onetime priv_key their signed pub key in

let shared secret =
match their onetime pub key with
| None -> ff @| dhl @| dh2 @| dh3
| Some their onetime pub key ->
let dh4 = dh our_onetime priv_key their onetime pub_key in
ff @ dhl @| dh2 @| dh3 @| dh4
in
let res = hkdfl shared secret zz label WhisperText in
res

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 22%t, 2019 22/22

...implemented in Low*

val initiate’: output: lbuffer uint8 (size 32) ->
our _identity priv_key: privkey p ->
our _onetime priv_key: privkey p ->
their identity pub key: pubkey p ->
their signed pub key: pubkey p ->
their onetime pub key: pubkey p ->
defined_their_onetime_pub_key: bool ->
Stack unit
(requires (fun h -> live h output /\ ... (* more liveness *) /\
disjoint output our identity priv_key /\
(* more disjointness *)))
(ensures (fun h® _ hl -> modifiesl output h® hl /\
(* THE IMPLEMENTATION MATCHES THE SPEC *)
hl.[output] == Spec.Signal.Core.initiate’
ho.[our _identity priv_key] hO.[our onetime priv_key]
hO.[their_identity pub_key] h0.[their_ signed_pub_key]
(if defined their onetime pub key then
Some(h0.[their onetime pub key])
else
None)))

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 22%t, 2019 22/22

