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The Web beyond the Web

The Web environment has become the choice target for
deploying applications.

Think: websites, desktop apps (Electron), server apps
(node.js), browser addons...

How about security-sensitive applications, such as: password
managers, secure messengers?
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Life is hard for secure web apps

Application developers are at a loss for secure toolchains
targeting the Web runtime.

e custom cryptographic schemes
¢ ad-hoc protocols

unverifiable app logic

hostile target environment (JavaScript).

(Larger) Claim: the JavaScript toolchain is inadequate for
Web-based security-sensitive applications.
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An F* to WASM toolchain

We formalize a verified pipeline from Low* to WASM and
implement it in the KreMLin compiler.

Low™(icFp17)

side-channel check

KreMLin

browser, node, ...
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This work's contributions

» A generic toolchain (formalization and implementation)
to compile F* programs to WebAssembly

e The HACL* verified cryptographic library compiled to
WebAssembly
e A formally verified implementation of Signal, in
WebAssembly
 Verified for functional correctness, memory safety,
side-channel resistance and protocol security
* No performance penalty; same API; ready to integrate



Our running example: Signal

« Signal powers WhatsApp, Messenger, Skype, Signal
This means over 1 billion users

e Allows communicating asynchronously (trend)
¢ Relies on server with limited trust

Generally trust-on-first-use
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Our running example: Signal

« Signal powers WhatsApp, Messenger, Skype, Signal
This means over 1 billion users

e Allows communicating asynchronously (trend)
¢ Relies on server with limited trust

Generally trust-on-first-use

Let's start by a quick overview of the protocol.
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Signal: a recap

 the protocol is sophisticated

X3DH for session initiation

e double-ratchet for asynchronous communications,
forward secrecy and post-compromise security

« involves non-trivial cryptography (X25519, etc.)

https://signal.org/docs/
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Step 1: a protocol specification

Written in ProVerif (symbolic model). Builds on previous work
(Euro S&P’17).

Guarantees integrity, confidentiality, forward secrecy,
post-compromise security.

Initiator | Responder R

Prior Knowledge: Prior Knowledge:
(i,9") (r.g"),(s,9°)[; (0,9°)]

Initiate(i,g", g°[, 9°]) — (rko):
generate (e, g°)
dho = 0xFF | g* | g | g°°[| g°°]
rko = HKDF(dhy, 0x00%%, “WhisperText”)
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Step 2: transcribe specifications to F*

An ML-like language with support for program verification via
SMT automation.

 Specifications include more detail than ProVerif (e.g. tags)
¢ Currently manual; hope to automate it

» Specifications extract to OCaml, for tests — not suitable
for implementations!
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Step 3a: implement cryptography

We use HACL" for the cryptographic primitives.

HACL* has been integrated in Firefox, WireGuard, mbedTLS,
etc.

Now available on the Web!

Generally useful:

« fills the gap for custom or new primitives (not in
WebCrypto or Node)

 a solution for code that needs synchronous APls
« avoid legacy libraries (OpenSSL on Node).
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Step 3b: implement Signal core

We implement all the core operations of the Signal protocol
in Low™.

Low™ is a low-level subset of F* that compiles to C using the
KreMLin compiler.

Low™* has been used by HACL*, EverCrypt, Merkle Trees,
libquiccrypto.

Now a verified implementation of Signal in C and WebAssembly. ‘

J. Protzenko et al. — MSR + INRIA Verified Cryptographic Web Applications in WASM May. 22, 2019 12 /22



Step 4: compile Low* to WebAssembly

A new, safe, widely supported target for fast, portable
execution. Used primarily in web runtimes but not only.

« isolation guarantees

 basic type safety relying on an operand stack and
structured control flow

* more compiler support every day: LLVM, emscripten,
mono, etc.

Used for video games, AutoCad, large applications...
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Our ProVerif to WASM toolchain

We formalize a verified pipeline from ProVerif to WASM and
extend the KreMLin compiler with a WASM backend.

transcribe

ProVerif

refines

compiles via

Low™ impl

KreMLin
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A direct route from Low* to WASM

We formalize the compilation from Low™* to WASM.

A simple translation (WASM is an expression language) that
eliminates complexity and fits in two paper pages.

Thanks to a new intermediary language in KreMLin, the
compilations rules are compact, auditable and simple.
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A direct route from Low* to WASM

We implement the compilation from Low* to WASM.

The implementation is carefully audited and follows the paper
rules.

« 2,400 lines of OCaml code (total: 11,000)
¢ does not implement any sophisticated optimization
e very regular.

Consequence

A high-assurance compilation toolchain to WASM!
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An indirect route from Low* to WASM

One reason we chose to implement our own toolchain...

Classic route (via Emscripten): Low* — C — WASM
e massive TCB
e no side-channel reasoning

e requires KreMLin to deal with C semantics (un-necessary
transformations)

With only 2,400 extra lines of OCaml, we have greater
confidence.
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What we prove

Thanks to a combination of techniques, we guarantee:

e memory safety, by virtue of Low*
» functional correctness, by virtue of the specifications

e absence of “classic” side-channel leaks, by construction
and through a dedicated check

In short, we offer a library of core building blocks of the Signal
protocol.

Session and state management, policies to discard old
ratchets, etc. are left to the JavaScript code (need integration
with the browser).
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Integration

We pass the entire testsuite. The WASM memory is behind a
closure (defensive). We offer the same API.

Shuffled Signal Protocol Test Vectors as Alice
v send prekey message A E10) passes: 1568 failures: 0 duration: 6.09s
v send message B
¥ receive message D
¥ receive message C
v send message E

Standard Signal Protocol Test Vectors as Bob
V¥ receive prekey message A ({5
v receive prekey message B
v send message C
v send message D
¥ receive message E
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Performance (1)

Step F*-WebAssembly | Vanilla Signal
initiate/respond 61.6 ms 74.7 ms
Diffie-Hellman ratchet 217 ms 354 ms
symmetric key ratchet 2.19 ms 3.52ms

Our implementation is faster on many operations than the
original libsignal. (Reason: an asm.js version of curve25519).

For operations involving SHA and AES-CBC, hard to beat
native crypto in WebCrypto.
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Performance (2)

Primitive (blocksize, rounds) \]:ffrl‘:crzatgn% WASM ‘I;l{:}% Ie-.;;“:l WASM
Chacha20 (4kB, 100k) 28s 41s
SHA2_256 (16kB, 10k) 18s 35s
SHA2_512 (16kB, 10k) 13s 34s
Poly1305_32 (16kB, 10k) 0.15s 04s
Curve25519 (1k) 0.7s 25s
Ed25519 sign (16kB, 1k) 3.0s 100s
Ed25519 verify (16kB, 1k) 30s 10.0s

e simple compilation scheme not always optimal

» 128-bit arithmetic destroys performance, need 32-bit
versions

» low hanging fruits: see chacha20.
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Verified Cryptographic Web Applications in WASM

¢ A general pattern any application in a Web context
(desktop, server or browser)

» Offers a solution for crypto libraries: new algorithms,
custom schemes, absence of async, no legacy binaries

* We built software: Signal* + Web-HACL* as a side effect

Please get in touch! https://signalstar.gforge.inria.fr/
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Emscripten Low* — C (KreMLin): OK (ICFP'17)
C — WASM (emscripten): low trust



Emscripten Low* — C (KreMLin): OK (ICFP'17)
C — WASM (emscripten): low trust

KreMLin Low* — WASM (KreMLin): OK (S&P'19)



(* Spec *)

let p = pow2 255 - 19

type elem = n:int { 0 <= n /\ n<p }
let add (x y: elem): elem = (x + y) % p

(* Implem *)
type felem = p:uint64 p { length p =5 }

let fadd (output a b: felem):
Stack unit

(requires (fun h@ -> live hO output /\
live hO a /\ live hO b /\
fadd pre h0.[a] ho.[b])

(ensures (fun hO _ hl ->
modifies 1 output hO hl /\
hl.[output] == add ho.[a] hO.[b]))



concise
(* Spec *) specification

let p = pow2 255 - 19
type elem = n:int { @ <= n /\ n < p }/

let add (x y: elem): elem = (x + y) % p

(* Implem *)
type felem = p:uint64 p { length p =5 }

let fadd (output a b: felem):
Stack unit

(requires (fun h@ -> live hO output /\
live hO a /\ live hO b /\
fadd pre h0.[a] ho.[b])

(ensures (fun hO _ hl ->
modifies 1 output hO hl /\
hl.[output] == add ho.[a] hO.[b]))
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(* Spec *)

let p = pow2 255 - 19

type elem = n:int { 0 <= n /\ n<p }
let add (x y: elem): elem = (x + y) % p

(* Implem *)
type felem = p:uint64 p { length p =5 }

let fadd (output a b: felem):
Stack unit
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modifies 1 output hO hl /

hl.[output] == add ho.[a] hO.[b]))




(* Spec *)

let p = pow2 255 - 19

type elem = n:int { 0 <= n /\ n<p }
let add (x y: elem): elem = (x + y) % p

(* Implem *)
type felem = p:uint64 p { length p =5 }

let fadd (output a b: felem):
Stack unit
(requires (fun h@ -> live hO output /\

live hO a /\ live ho b /\

fadd_pre ho.[a] ho.[b]) functional specification
(ensures (fun hO _ hl -> (erased)

modifies 1 output hO hl /\

hl.[output] == add ho.[a] hO.[b])f‘;'



(* Spec *)

let p = pow2 255 - 19

type elem = n:int { 0 <=n /\ n<p }
let add (x y: elem): elem = (X + y) % p

(* Implem *)
type felem = p:uint64 p { length p =5 }

let fadd (output a b: felem):
Stack unit

(requires (fun h@ -> live hO output /\
live ho a /\ live hO b /\
fadd pre ho.[a] hO.[b])

(ensures (fun h0 _ hl ->
modifies 1 output hO hl /\
hl.[output] == add h0.[a] hO.[b]))

...compiles to



fadd = func [int32;int32;int32] — |]
local [€o, 01, £ : Int32; 43 : int32; £ : int32].
call get_stack; loop(
// Push dst + 8*i on the stack
get_local ¢y; get_local /3;i32.const 8;i32.binopx; i32.binop+
// Load a + 8%*i on the stack
get_local /;; get_local /3;i32.const 8;i32.binopx; i32.binop+
i64.load
// Load b + 8*i on the stack (elided, same as above)
// Add a.[i] and b.[i], store into dst.[i]
i64.binop+;i64.store
/1 Per the rules, return unit
i32.const 0; drop
/] Increment i; break if i ==
get_local /3;i32.const 1;i32.binop+; tee_local /3
i32.const 5;i32.0p =; br_if
);i32.const 0
store_local / ; call set_stack; get_local ¢



...transcribed to an F* spec ...

let initiate’
(our_identity priv_key: privkey) (* i *)
(our_onetime priv_key: privkey) (* e *)
(their_identity pub_key: pubkey) (* g~ *)
(their signed pub key: pubkey) (* g° *)
(their_onetime pub key: option pubkey) (* g°, optional *)

: Tot (lbytes 32) = (* output: rko *)
let dhl = dh our_identity priv_key their signed pub_key in
let dh2 = dh our_onetime priv_key their identity pub key in
let dh3 = dh our onetime priv_key their signed pub key in

let shared secret =
match their onetime pub key with
| None -> ff @| dhl @| dh2 @| dh3
| Some their onetime pub key ->
let dh4 = dh our_onetime priv_key their onetime pub_key in
ff @ dhl @| dh2 @| dh3 @| dh4
in
let res = hkdfl shared secret zz label WhisperText in
res
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...implemented in Low*

val initiate’: output: lbuffer uint8 (size 32) ->
our _identity priv_key: privkey p ->
our _onetime priv_key: privkey p ->
their identity pub key: pubkey p ->
their signed pub key: pubkey p ->
their onetime pub key: pubkey p ->
defined_their_onetime_pub_key: bool ->
Stack unit
(requires (fun h -> live h output /\ ... (* more liveness *) /\
disjoint output our identity priv_key /\
(* more disjointness *)))
(ensures (fun h® _ hl -> modifiesl output h® hl /\
(* THE IMPLEMENTATION MATCHES THE SPEC *)
hl.[output] == Spec.Signal.Core.initiate’
ho.[our _identity priv_key] hO.[our onetime priv_key]
hO.[their_identity pub_key] h0.[their_ signed_pub_key]
(if defined their onetime pub key then
Some(h0.[their onetime pub key])
else
None)))
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