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U2F protocol steps 

 

 1.  Registration (associating a token with an account) 

 2.  Authentication (logging into an account) 
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U2F Step #1: Registration 

github.com github.com 

pkgithub.com pkgithub.com 

Associate a token with an account. 

github.com 
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U2F Step #2: Authentication 

github.com, 
challenge 

signature signature 

github.com, 
challenge 

github.com 

Log into an account. 
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github.com, 
challenge 

github.com 

Even if malware takes over your browser, 
it can’t authenticate without the token. 

U2F defends against phishing and browser compromise 

skgithub.com 
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github.com 

… but what about vulnerabilities in the token itself? 

skgithub.com 
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github.com 

… but what about vulnerabilities in the token itself? 

1.  Implementation bugs 

2.  Supply-chain tampering 

skgithub.com 



Security threat #1: Implementation bugs in token 
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Security threat #2: Supply-chain tampering 



True2F: U2F protections + faulty-token protection 
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    U2F protection 

Browser learns no secrets. 
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    U2F protection 

Browser learns no secrets. 

    True2F addition: Faulty-token protection 

Browser enforces correct behavior 
to prevent token leaking secrets. 
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Goals:  
●  Augment U2F to protect against faulty tokens 

○  Same protections as U2F even if token is buggy or backdoored 

●  Backwards-compatible with U2F server 
○  Only requires changes to token and browser, not server 

●  Practical on commodity hardware tokens 
○  Evaluated on Google hardware 
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Goals:  
●  Augment U2F to protect against faulty tokens 

○  Same protections as U2F even if token is buggy or backdoored 

●  Backwards-compatible with U2F server 
○  Only requires changes to token and browser, not server 

●  Practical on commodity hardware tokens 
○  Evaluated on Google hardware 

Design principles: 
●  Both browser and token contribute randomness to the protocol. 

●  Browser can verify all deterministic token operations. 
 

 



True2F implementation 
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Google production USB 
token with same hardware 

specs. 

Google development 
board running True2F. 

ARM SC-300 processor 
clocked at 24 MHz 
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 0.  Initialization (after purchasing a token)  
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 2.  Authentication (logging into an account) 
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True2F protocol steps 

 0.  Initialization (after purchasing a token) 
➔  Ensure token master secret incorporates good randomness. 

 1.  Registration (associating a token with an account) 
 

 2.  Authentication (logging into an account) 
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Principle:  Both browser and token contribute randomness to the protocol. 

 

[New] 
 

[Modified] 
 

[Modified] 
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Step #0: Initialization 

 

collaborative  
key generation 
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collaborative  
key generation 

msk 
mpk 

Step #0: Initialization 
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Initialization: Security properties 

msk 
mpk 

The token cannot 
bias mpk. 

[GJKR99], [CMBF13]  
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The token cannot 
bias mpk. 

The browser learns 
nothing about msk. 

Initialization: Security properties 

msk 
mpk 

[GJKR99], [CMBF13]  
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The token cannot 
bias mpk. 

The browser learns 
nothing about msk. 

Initialization properties 

Our protocol reduces the number of group operations 
by 3x compared to [CMBF13] (see paper). 
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True2F protocol steps 

 0.  Initialization (after purchasing a token) 
➔  Ensure token master secret incorporates good randomness. 

 1.  Registration (associating a token with an account) 
➔  Ensure per-site keys generated correctly. 

 2.  Authentication (logging into an account) 
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Principle: Browser can verify all deterministic token operations. 

 

[New] 
 

[Modified] 
 

[Modified] 
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 Step #1: U2F Registration 

github.com github.com 

pkgithub.com pkgithub.com 

github.com 

Associate a token with an account. 
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Security threat #1: Implementation bugs in token 

github.com github.com 

pkgithub.com pkgithub.com 

github.com Generate (skgithub.com, 
pkgithub.com) using weak randomness 
 

Bad randomness in embedded devices: 
[EZJ+14], [LHA+14], [NDWH14], [YRS+09] 
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Security threat #2: Supply-chain tampering 

evil.com evil.com 

pkevil.com pkevil.com 

evil.com pkevil.com ← f(skgithub.com) 
 
 skgithub.com← f -1(pkevil.com) 

 
 



35 

Verifiable Identity Families (VIFs) 

msk 
mpk 

Derive server-specific keypairs in 
a deterministic and verifiable 
way from a master keypair. 
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Verifiable Identity Families (VIFs) 

msk 
mpk 

Formally, we prove that VIFs 
are unique, verifiable, 
unlinkable, and unforgeable. 



37 

github.com 

msk 
mpk 

Contribution: Simple (weak) VIF construction 
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github.com 

Contribution: Simple (weak) VIF construction 
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github.com 

Contribution: Simple (weak) VIF construction 
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github.com 

Contribution: Simple (weak) VIF construction 
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github.com 

    Unique: The token can produce 
the unique keypair for github.com. 

Contribution: Simple (weak) VIF construction 
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github.com 

    Verifiable: The token can prove to the browser that 
pkgithub.com is really the unique public key for github.com.  

Contribution: Simple (weak) VIF construction 
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github.com 

    Unforgeable: The browser cannot 
forge a signature under pkgithub.com. 

Contribution: Simple (weak) VIF construction 
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github.com 

    Weak unlinkability: github.com cannot distinguish 
pkgithub.com from a random ECDSA public key.  

Contribution: Simple (weak) VIF construction 
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github.com 

    Full unlinkability: Informally, browser cannot 
generate public keys without the token (see paper). 

Contribution: Simple (weak) VIF construction 



True2F protocol steps 

 0.  Initialization (after purchasing a token) 
➔  Ensure token master secret incorporates good randomness. 

 1.  Registration (associating a token with an account) 
➔  Ensure per-site keys generated correctly. 

 2.  Authentication (logging into an account) 
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True2F protocol steps 

 0.  Initialization (after purchasing a token) 
➔  Ensure token master secret incorporates good randomness. 

 1.  Registration (associating a token with an account) 
➔  Ensure per-site keys generated correctly. 

 2.  Authentication (logging into an account) 
➔  Ensure authentication leaks no data. 
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Principle: Both browser and token contribute randomness to the protocol. 
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 Step #2: U2F Authentication 

github.com, 
challenge 

signature signature 

github.com, 
challenge 

github.com 

Log into an account. 
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Security threat #1: Implementation bugs in token 

github.com, 
challenge 

signature signature 

github.com, 
challenge 

github.com 
Choose signing nonce with 
weak randomness 

Bad randomness in embedded devices: 
[EZJ+14], [LHA+14], [NDWH14], [YRS+09] 
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Security threat #2: Supply-chain tampering 

github.com, 
challenge 

signature signature 

github.com, 
challenge 

evil.com 
Hide skgithub.com in 
signature 

Subliminal channels: [Sim84], [Des88] 
Unique signatures: [BLS01] 



Firewalled ECDSA Signatures 

Two ideas: 

1.  The token and browser use collaborative key generation to 
generate a signing nonce. 

2.  Because of ECDSA malleability, signatures are re-randomized by the 
browser. 

… see paper for details. 

51 [AMV15], [MS15], [DMS16] 



True2F protocol steps 

 0.  Initialization (after purchasing a token) 
➔  Ensure token master secret incorporates good randomness. 

 1.  Registration (associating a token with an account) 
➔  Ensure per-site keys generated correctly. 

 2.  Authentication (logging into an account) 
➔  Ensure authentication leaks no data. 
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Other contributions (see paper) 

●  Cryptographic optimizations tailored to token hardware 
○  Offload hash-to-point to the browser 
○  Cache Verifiable Random Function outputs at the browser 

 

●  Flash-optimized data structure for storing U2F authentication counters 
○  Provides stronger unlinkability than many existing U2F tokens 
○  “Tear-resistant” and respects constraints of token flash 
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Multiple Browsers 

1.  Token gives mpk to browser (protect against bugs) 

2.  Sync mpk across browser instances 
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True2F evaluation 
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Google production USB 
token with same hardware 

specs. 

Google development 
board running True2F. 

ARM SC-300 processor 
clocked at 24 MHz 
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True2F imposes minimal authentication overhead 
Collaborative Keygen 
VIF.Eval 
ECDSA.Sign 

Browser 

To
ke

n 
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Collaborative Keygen 
VIF.Eval 
ECDSA.Sign 

Browser 

To
ke

n 

True2F only ~2.5x 
slower than U2F 

True2F imposes minimal authentication overhead 
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Comparatively small end-to-end slowdown 
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Comparatively small end-to-end slowdown 

True2F only 12-16% 
slower than U2F 



True2F: Don’t settle for untrustworthy hardware 
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True2F 
-  Augments U2F to protect against backdoored tokens 
-  Backwards-compatible with existing U2F servers 

Practical to deploy: performant on commodity hardware tokens 

Next steps: help with FIDO adoption 
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