True2F: Backdoor-resistant
authentication tokens

Emma Dauterman, Henry Corrigan-Gibbs, David Maziéres,
Dan Boneh, Dominic Rizzo

Stanford and Google

IEEE Security & Privacy 2019

U2F: Effective hardware 2FA

U2F: Effective hardware 2FA

KrebsonSecurity

In-depth security news and investigation

23 Google: Security Keys Neutralized Employee
Phishing
Google has not had any of its 85,000+ employees successfully phished on their work-

related accounts since early 2017, when it began requiring all employees to use physical
Security Keys in place of passwords and one-time codes, the company told KrebsOnSecurity.

U2F protocol steps

1. Registration (associating a token with an account)

2. Authentication (logging into an account)

U2F Step #1: Registration

Associate a token with an account.

github.com

m pkgithub . com

n
—p

~github.com

pkgithub . com ;/

github.com

5

U2F Step #2: Authentication

Log into an account.

gilthub.com,
challenge

m signature

-]

github.com,
challenge

signature ;/

github.com

6

U2F defends against phishing and browser compromise

Even if malware takes over your browser,
it can’t authenticate without the token.

gilithub.com,
challenge

3

sk

-
github.com — k/

github.com

7

... but what about vulnerabilities in the token itself?

sk

> 4
S

github.com

github.com

8

... but what about vulnerabilities in the token itself?

1. Implementation bugs

2. Supply-chain tampering

'3

| o

/\
: oy

github.com

github.com

9

Security threat #1: Implementation bugs in token

Millions of high-security crypto keys
crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their
data.

DAN GOODIN - 10/16/2017, 4:00 AM

INSS+17]

10

Security threat #1: Implementation bugs in token

Mmilf = . o
crip] Estonia Invalidates Digital

racorizf CErtificates Over Crypto Crack

data.
oan coooill Unpatched Infineon Chip Peril as Researchers Speed Up Encryption Key Attack

Wiere

INSS+17]

Security threat #1: Implementation bugs in token

Millif
crip Est #=> The Chromium Projects

Factoriz ce IM >

data unpat ITusted Platform Module firmware
vulnerability: technical documentation

DAN GOODI y Attack

Vulnerability description

There is a bug in certain Infineon TPM firmware
versions which results in RSA keys generated
by the TPM being vulnerable to an attack that
allows to recover the private half of the RSA key
from just the public key. The researchers who
found the vulnerability have published high-level

[NSS+17] ===

Security threat #1: Implementation bugs in token

Milli BANK SECURITYe
crip] ESt G The Chromium Projects

Factoriz Ce'()hrom[un* oS >
data.

Truste
DAN GOODI Unpatg 1 October 16, 2017 | Yubico Team
vulner . .
Infineon RSA Key Generation Issue
Vulnerak

There is a bu Infineon Technologies, one of Yubico’s secure element vendors, has

versions whicj . s . .) .
by the TEM b informed us of a security issue in their cryptographic firmware library. The

allows to recof . . - .
from just the [1SSU€ affects TPMs in millions of computers, and multiple smart card and

found the vuln]
information he

security token vendors.

INSS+17]

13

Security threat #1: Implementation bugs in token

I T S KT

BANK SECURITYe

Milli GOOGLE TECH CYBERSECURITY
crip] ESt #=> The Chromium Projects Google is replacing

4 Cel ¥ Bluetooth Titan Security
Factoriz Chromium OS >
i Trust Keys because of a
Unpatd 1TUStE

oan coopi| ~MP4 Iner October 16, 2017 | Yubico Team VUInerabiIit

vu

Infineon RSA Key Generati y
Vulnerakb Doesn't affect Titan USB keys
There is a bud INfineon Technologies, one of Yubico’s secure ele By Dieter Bohn | @backlon | May 15, 2019, 2:32pm EDT

versions whicj ; T . . P .
by the TPM b INformed us of a security issue in their cryptographic firmware library. The

allows to recof . : g .
from just the [1SSU€ affects TPMs in millions of computers, and multiple smart card and
found the vuln]

information hd S€cUrity token vendors.

INSS+17]

Security threat #2: Supply-chain tampering

Photos of an NSA “upgrade” factory show
Cisco router getting implant

Servers, routers get “beacons” implanted at secret locations by NSA's TAO team.

SEAN GALLAGHER - 5/14/2014, 12:30 PM

(TS//SV/NF) Left: Intercepted packages are opened carefully; Right: A “load station”
implants a beacon

MOTHERBOARD

By Joseph Cox Aug 31 2018, 5:05am

Experts Call for
Transparency Around
Google’s Chinese-
Made Security Keys

Google's Titan Security Keys, used to lock
down accounts, are produced in China.
Several experts want more answers on that
supply chain process, for fears of tampering or
security issues.

15

True2F: U2F protections + faulty-token protection

16

True2F: U2F protections + faulty-token protection

\/ U2F protection

<l
<
n
—p

Browser learns no secrets.

True2F: U2F protections + faulty-token protection

\/ U2F protection

<l
<
n
—p

Browser learns no secrets.

\/ True2F addition: Faulty-token protection

Browser enforces correct behavior
to prevent token leaking secrets.

18

True2F: U2F protections + faulty-token protection

Goals:
e Augment U2F to protect against faulty tokens
o Same protections as U2F even if token is buggy or backdoored
e Backwards-compatible with U2F server
o Only requires changes to token and browser, not server
e Practical on commodity hardware tokens

o Evaluated on Google hardware

19

True2F: U2F protections + faulty-token protection

Goals:
e Augment U2F to protect against faulty tokens
o Same protections as U2F even if token is buggy or backdoored
e Backwards-compatible with U2F server
o Only requires changes to token and browser, not server
e Practical on commodity hardware tokens

o Evaluated on Google hardware

Design principles:

e Both browser and token contribute randomness to the protocol.

e Browser can verify all deterministic token operations.

20

True2F implementation

Google development
board running True2F.

Google production USB
token with same hardware
specs.

ARM SC-300 processor
clocked at 24 MHz

21

U2F protocol steps

1. Registration (associating a token with an account)

2. Authentication (logging into an account)

22

True2F protocol steps

0. Initialization (after purchasing a token)
1. Registration (associating a token with an account)

2. Authentication (logging into an account)

[New]

[Modified]

[Modified]

23

True2F protocol steps

0. Initialization (after purchasing a token) [New]

-> Ensure token master secret incorporates good randomness.
1. Registration (associating a token with an account) [Modified]
2. Authentication (logging into an account) [Modified]

Principle: Both browser and token contribute randomness to the protocol.

24

Step #0: Initialization

collaborative

key generation
= | €

25

Step #0: Initialization

collaborative
key generation

P —
<« >

msk

Initialization: Security properties

The token cannot
bias mpk.

msk

[GJKR99], [CMBF13]

27

Initialization: Security properties

The token cannot
bias mpk.

msk

[GJKR99], [CMBF13]

The browser learns
nothing about msk.

28

Initialization properties

The token cannot
bias mpk.

The browser learns
nothing about msk.

¢

Our protocol reduces the number of group operations

by 3x compared to [CMBF13] (see paper).

29

True2F protocol steps

\/O. Initialization (after purchasing a token)

-> Ensure token master secret incorporates good randomness.

1. Registration (associating a token with an account)

2. Authentication (logging into an account)

[New]

[Modified]

[Modified]

30

True2F protocol steps

\/O. Initialization (after purchasing a token) [New]

-> Ensure token master secret incorporates good randomness.

1. Registration (associating a token with an account) [Modified]
- Ensure per-site keys generated correctly.

2. Authentication (logging into an account) [Modified]

Principle: Browser can verify all deterministic token operations.

31

Step #1: U2F Registration

Associate a token with an account.

github.com

m pkgithub .com

n
—p

~github.com

pkgithub .com ;/

github.com

32

Security threat #1: Implementation bugs in token

github.com ~github.com

pkgithub .com ;/

Generate (Skgithpb . com’ github.com
PKy: thub . com) USING Weak randomness

pkgithub.com

n
—p

Bad randomness in embedded devices:
[EZJ+14], [LHA+14], [INDWH14], [YRS+09] 3

Security threat #2: Supply-chain tampering

evil.com ‘f///;;\j
pkevil.com k:i;ﬁ///)

evil.com

evil.com

<l
<

pkevil.com

— f(sk

pkevil.com

github.com)

sk

f-1(pk

github.come_ evil.com)

34

msk

Verifiable Identity Families (VIFs)

Derive server-specific keypairs in
a deterministic and verifiable
way from a master keypair.

&

35

msk

Verifiable Identity Families (VIFs)

Formally, we prove that VIFs
are unique, verifiable,
unlinkable, and unforgeable.

&

36

Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q.

msk

\/
github.com

37

Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q.

msk = x € Z,

mpk=X=9¢"€G

3

\/
github.com

38

Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q.

msk = x € Z,
k=H(X)

mpk=X=9¢"€G
k= H(X)

3

\/
github.com

39

Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q.

mpk=X =¢" € G

msk = x € Z,
k=H(X)

<
<

github.com

k= H(X)

pk

github.com

3

a < PRF(k,github.com)
(sk, pk) < (ax, g*%")

pk

a < PRF(k, github.com)
Check if pk = X

T
&

github.com

40

Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q. mpk = X = ¢ € G
msk = x € Z, k=H(X)
k= H(X) . |
A github.com) github.com
a < PRF(k,github.com) a
(sk, pk) = (ax, g*") a < PRF(k, github.com)

Check if pk = X

-\/Unique: The token can produce
the unique keypairfor github . com.

github.com

T
S

41

Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q. mpk = X = ¢ € G
msk = x € Z, k=H(X)
k= H(X) . |
A github.com) github.com
a < PRF(k,github.com) a
(sk, pk) = (ax, g*") a < PRF(k, github.com)

Check if pk = X

T
S

github.com

\/ Verifiable: The token can prove to the browser that

PKyi thub . com IS really the unique public key for github. com.

42

Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q. mpk = X = ¢ € G
msk = x € Z, k=H(X)
k= H(X) . |
A github.com) github.com
a < PRF(k,github.com) a
(sk, pk) = (ax, g*") a < PRF(k, github.com)

Check if pk = X

\/ Unforgeable: The browser cannot
forge a signature under pk

github.com"

\/
github.com

43

Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order g.

mpk=X=9¢"€G

msk = x € Z,
k=H(X)

<
<

github.com

k= H(X)

pk

3

a < PRF(k,github.com)
(sk, pk) < (ax, g*%")

github.com

pk

a < PRF(k,github.com)
Check if pk = X

T
S

github.com

\/Weak unlinkability: github.com cannot distinguish
pkqithub com from a random ECDSA public key.

44

Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q. mpk = X = ¢ € G
msk = x € Z, k=H(X)
k= H(X) . |
A github.com) github.com
a < PRF(k,github.com) a
(sk, pk) = (ax, g*") a < PRF(k, github.com)

Check if pk = X

T
S

github.com

xFuII unlinkability: Informally, browser cannot
generate public keys without the token (see paper).

45

True2F protocol steps

\/O. Initialization (after purchasing a token)

-> Ensure token master secret incorporates good randomness.

\A . Registration (associating a token with an account)
-> Ensure per-site keys generated correctly.

2. Authentication (logging into an account)

[New]

[Modified]

[Modified]

46

True2F protocol steps

\/O. Initialization (after purchasing a token) [New]

-> Ensure token master secret incorporates good randomness.

\A . Registration (associating a token with an account) [Modified]

-> Ensure per-site keys generated correctly.

2. Authentication (logging into an account) [Modified]
- Ensure authentication leaks no data.

Principle: Both browser and token contribute randomness to the protocol.

47

Step #2: U2F Authentication

Log into an account.

gilthub.com,
challenge

m signature

—p

github.com,
challenge

signature ;/

github.com

48

Security threat #1: Implementation bugs in token

github.com, github.com, /\
~ challenge challenge
signature signature | ;/

Choose signing nonce with

weak randomness github.com

Bad randomness in embedded devices:
[EZJ+14], [LHA+14], [INDWH14], [YRS+09] 49

Security threat #2: Supply-chain tampering

github.com, github. com,w
challenge challenge
. 9 . 9
signature signature | ;/
H_ide Skgithub .com in evil.com
signature

Subliminal channels: [Sim84], [Des88]
Unique signatures: [BLS01] 50

Firewalled ECDSA Signatures

Two ideas:

1. The token and browser use collaborative key generation to
generate a signing nonce.

2. Because of ECDSA malleability, signatures are re-randomized by the
browser.

... see paper for details.

[AMV15], [MS15], [DMS16]

51

True2F protocol steps

\/O. Initialization (after purchasing a token)

-> Ensure token master secret incorporates good randomness.

\A . Registration (associating a token with an account)
-> Ensure per-site keys generated correctly.

\/2. Authentication (logging into an account)

-> Ensure authentication leaks no data.

[New]

[Modified]

[Modified]

52

Other contributions (see paper)

e Cryptographic optimizations tailored to token hardware
o Offload hash-to-point to the browser
o Cache Verifiable Random Function outputs at the browser

e Flash-optimized data structure for storing U2F authentication counters
o Provides stronger unlinkability than many existing U2F tokens
o “Tear-resistant” and respects constraints of token flash

53

Multiple Browsers

1. Token gives mpk to browser (protect against bugs)

2. Sync mpk across browser instances

54

True2F evaluation

Google development
board running True2F.

Google production USB
token with same hardware
specs.

ARM SC-300 processor
clocked at 24 MHz

55

True2F imposes minimal authentication overhead

B Collaborative Keygen B Browser
B VIF.Eval
B ECDSA.Sign

No optimizations | N -5

Token

U2F Fzs}

0 100 200 300 400
Time (ms)

56

True2F imposes minimal authentication overhead

B Collaborative Keygen B Browser

B VIF.Eval
B ECDSA.Sign

Token

446

No optimizations
Fast keygen only

U2F F23§

0 100 200 300 400
Time (ms)

57

True2F imposes minimal authentication overhead

B Collaborative Keygen B Browser
B VIF.Eval
B ECDSA.Sign

Token

No optimizations 446

Fast keygen only
Hash-to-point assist only

c
N
11
\S)
oY)

0 100 200 300 400
Time (ms)

True2F imposes minimal authentication overhead

B Collaborative Keygen B Browser
BN VIF.Eval
B ECDSA.Sign

Token

No optimizations 446
Fast keygen only
Hash-to-point assist only

VREF caching only

U2F Fz3}

0 100 200 300 400
Time (ms)

1

1
1] [} 1
I I I I
I I 1 1
I I 1 I
I I I I
I I I I
I I I I

1

59

True2F imposes minimal authentication overhead

B Collaborative Keygen B Browser
B VIF.Eval
B ECDSA.Sign

Token

No optimizations 446

Fast keygen only
Hash-to-point assist only
VREF caching only
True2F (+ all)

U2F

0 100 200 300 400
Time (ms)

True2F imposes minimal authentication overhead

B Collaborative Keygen B Browser

B VIF.Eval
B ECDSA.Sign

Token

446

No optimizations IR e

Fast keygen only
Hash-to-point assist only
VREF caching only
True2F (+ all)
U2F

True2F only ~2.5x
slower than U2F

I I I
1 1 L

0 100 200 300 400
Time (ms)

61

Comparatively small end-to-end slowdown

I Protocol B Browser Overhead

Registration
True2F

U2F
Authentication
True2F

U2F vk

S

0 50 100 150 200 250
Time (ms)

62

Comparatively small end-to-end slowdown

I Protocol

Registration
True2F

U2F
Authentication
True2F

U2F vk

B Browser Overhead

147

234
204 '

True2F only 12-16%

slower than U2F

50

100

150
Time (ms)

200 250

63

True2F: Don’t settle for untrustworthy hardware

True2F
- Augments U2F to protect against backdoored tokens
- Backwards-compatible with existing U2F servers

Practical to deploy: performant on commodity hardware tokens

Next steps: help with FIDO adoption

Emma Dauterman
edauterman@cs.stanford.edu
https://arxiv.org/abs/1810.04660
https://github.com/edauterman/true2f
https://github.com/edauterman/u2f-ref-code

64

References

[ACMTO05] G. Ateniese, D. H. Chou, B. De Medeiros, and G. Tsudik. Sanitizable signatures. In ESORICS, 2005.

[BPR14] M.Bellare, K.G.Paterson,and P.Rogaway. Security of symmetric encryption against mass surveillance. In CRYPTO, 2014.

[BLS04] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. Journal of cryptology, 17(4), 2004.

[CBS04] S .Cabuk, C.E. Brodley, and C. Shields. IP covert timing channels: design and detection. In CCS, 2004.

[Des88] Y. Desmedt. Subliminal-free authentication and signature. In EUROCRYPT, 1988.

[DMS16] Y. Dadis, I. Mironov, and N. Stephens-Davidowitz. Message transmission with reverse firewalls—secure communication on corrupted machines. In
CRYPTO, 2016.

[DY05] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In PKC, 2005.

[EZJ+14] A. Everspaugh, Y. Zhai, R. Jellinek, T. Ristenpart, and M. Swift. Not-so-random numbers in virtualized Linux and the Whirlwind RNG. In Security and
Privacy. IEEE, 2014.

[GJKR99] Gennaro, Rosario, et al. "Secure distributed key generation for discrete-log based cryptosystems." International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg, 1999.

[GRPV18] S. Goldberg, L. Reyzin, D. Papadopoulos, and J. Vcelak. Verifiable random functions (VRFs). IETF CFRG Internet-Draft (Standards Track), Mar. 2018.
https://tools.ietf.org/html/ draft-irtf-cfrg-vrf-01.

[LHA+12] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C. Wachter. Ron was wrong, Whit is right. Cryptology ePrint Archive, Report
2012/064, 2012.

[NDWH12] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining your Ps and Qs: Detection of widespread weak keys in network devices. In USENIX
Security Symposium, volume 8, page 1, 2012.

[Hu92] W.-M. Hu. Reducing timing channels with fuzzy time. Journal of computer security, 1(3-4):233-254, 1992.

[MRV99] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In FOCS, 1999.

[MS15] I. Mironov and N. Stephens-Davidowitz. Cryptographic reverse firewalls. In EUROCRYPT, 2015.

[NSS+17] M. Nemec, M. Sys, P. Svenda, D. Klinec, and V. Matyas. The return of Coppersmith’s Attack: Practical factorization of widely used RSA moduli. In CCS,
2017.

[Sim84] G. J. Simmons. The Prisoners’ Problem and the Subliminal Channel. In CRYPTO, 1984.

[YRS+09] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When private keys are public: results from the 2008 Debian OpenSSL vulnerability. In

IMC, 2009. 65

