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U2F: Effective hardware 2FA

KrebsonSecurity

In-depth security news and investigation

23 Google: Security Keys Neutralized Employee
Phishing
Google has not had any of its 85,000+ employees successfully phished on their work-

related accounts since early 2017, when it began requiring all employees to use physical
Security Keys in place of passwords and one-time codes, the company told KrebsOnSecurity.




U2F protocol steps

1. Registration (associating a token with an account)

2. Authentication (logging into an account)



U2F Step #1: Registration

Associate a token with an account.
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U2F Step #2: Authentication

Log into an account.
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U2F defends against phishing and browser compromise

Even if malware takes over your browser,
it can’t authenticate without the token.
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... but what about vulnerabilities in the token itself?
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... but what about vulnerabilities in the token itself?

1. Implementation bugs

2. Supply-chain tampering
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Security threat #1: Implementation bugs in token

Millions of high-security crypto keys
crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their
data.

DAN GOODIN - 10/16/2017, 4:00 AM

INSS+17]
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Security threat #1: Implementation bugs in token
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Security threat #1: Implementation bugs in token

Millif
crip Est #=> The Chromium Projects

Factoriz ce IM >

data unpat ITusted Platform Module firmware
vulnerability: technical documentation

DAN GOODI y Attack

Vulnerability description

There is a bug in certain Infineon TPM firmware
versions which results in RSA keys generated
by the TPM being vulnerable to an attack that
allows to recover the private half of the RSA key
from just the public key. The researchers who
found the vulnerability have published high-level
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Security threat #1: Implementation bugs in token
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Security threat #1: Implementation bugs in token
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Infineon RSA Key Generati y
Vulnerakb Doesn't affect Titan USB keys
There is a bud INfineon Technologies, one of Yubico’s secure ele By Dieter Bohn | @backlon | May 15, 2019, 2:32pm EDT
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Security threat #2: Supply-chain tampering

Photos of an NSA “upgrade” factory show
Cisco router getting implant

Servers, routers get “beacons” implanted at secret locations by NSA's TAO team.

SEAN GALLAGHER - 5/14/2014, 12:30 PM

(TS//SV/NF) Left: Intercepted packages are opened carefully; Right: A “load station”
implants a beacon

MOTHERBOARD

By Joseph Cox Aug 31 2018, 5:05am

Experts Call for
Transparency Around
Google’s Chinese-
Made Security Keys

Google's Titan Security Keys, used to lock
down accounts, are produced in China.
Several experts want more answers on that
supply chain process, for fears of tampering or
security issues.
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True2F: U2F protections + faulty-token protection
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True2F: U2F protections + faulty-token protection

\/ U2F protection
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Browser learns no secrets.




True2F: U2F protections + faulty-token protection

\/ U2F protection
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Browser learns no secrets.

\/ True2F addition: Faulty-token protection

Browser enforces correct behavior
to prevent token leaking secrets.
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True2F: U2F protections + faulty-token protection

Goals:
e Augment U2F to protect against faulty tokens
o Same protections as U2F even if token is buggy or backdoored
e Backwards-compatible with U2F server
o Only requires changes to token and browser, not server
e Practical on commodity hardware tokens

o Evaluated on Google hardware
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True2F: U2F protections + faulty-token protection

Goals:
e Augment U2F to protect against faulty tokens
o Same protections as U2F even if token is buggy or backdoored
e Backwards-compatible with U2F server
o Only requires changes to token and browser, not server
e Practical on commodity hardware tokens

o Evaluated on Google hardware

Design principles:

e Both browser and token contribute randomness to the protocol.

e Browser can verify all deterministic token operations.
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True2F implementation

Google development
board running True2F.

Google production USB
token with same hardware
specs.

ARM SC-300 processor
clocked at 24 MHz
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U2F protocol steps

1. Registration (associating a token with an account)

2. Authentication (logging into an account)
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True2F protocol steps

0. Initialization (after purchasing a token)
1. Registration (associating a token with an account)

2. Authentication (logging into an account)

[New]

[Modified]

[Modified]

23



True2F protocol steps

0. Initialization (after purchasing a token) [New]

-> Ensure token master secret incorporates good randomness.
1. Registration (associating a token with an account) [Modified]
2. Authentication (logging into an account) [Modified]

Principle: Both browser and token contribute randomness to the protocol.
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Step #0: Initialization

collaborative

key generation
= | €
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Step #0: Initialization

collaborative
key generation
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Initialization: Security properties

The token cannot
bias mpk.

msk

[GJKR99], [CMBF13]
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Initialization: Security properties

The token cannot
bias mpk.

msk

[GJKR99], [CMBF13]

The browser learns
nothing about msk.
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Initialization properties

The token cannot
bias mpk.

The browser learns
nothing about msk.

¢

Our protocol reduces the number of group operations

by 3x compared to [CMBF13] (see paper).
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True2F protocol steps

\/O. Initialization (after purchasing a token)

-> Ensure token master secret incorporates good randomness.

1. Registration (associating a token with an account)

2. Authentication (logging into an account)

[New]

[Modified]

[Modified]
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True2F protocol steps

\/O. Initialization (after purchasing a token) [New]

-> Ensure token master secret incorporates good randomness.

1. Registration (associating a token with an account) [Modified]
- Ensure per-site keys generated correctly.

2. Authentication (logging into an account) [Modified]

Principle: Browser can verify all deterministic token operations.
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Step #1: U2F Registration

Associate a token with an account.
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Security threat #1: Implementation bugs in token

github.com ~github.com
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PKy: thub . com) USING Weak randomness
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Bad randomness in embedded devices:
[EZJ+14], [LHA+14], [INDWH14], [YRS+09] 3



Security threat #2: Supply-chain tampering
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msk

Verifiable Identity Families (VIFs)

Derive server-specific keypairs in
a deterministic and verifiable
way from a master keypair.

&
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msk

Verifiable Identity Families (VIFs)

Formally, we prove that VIFs
are unique, verifiable,
unlinkable, and unforgeable.

&
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Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q.

msk

\/
github.com

37



Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q.

msk = x € Z,

mpk=X=9¢"€G
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Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q.

msk = x € Z,
k=H(X)

mpk=X=9¢"€G
k= H(X)
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Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q.

mpk=X =¢" € G
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Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q. mpk = X = ¢ € G
msk = x € Z, k=H(X)
k= H(X) . |
A github.com ) github.com
a < PRF(k,github.com) a
(sk, pk) = (ax, g*") a < PRF(k, github.com)

Check if pk = X

-\/Unique: The token can produce
the unique keypairfor github . com.
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Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q. mpk = X = ¢ € G
msk = x € Z, k=H(X)
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\/ Verifiable: The token can prove to the browser that

PKyi thub . com IS really the unique public key for github. com.
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Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q. mpk = X = ¢ € G
msk = x € Z, k=H(X)
k= H(X) . |
A github.com ) github.com
a < PRF(k,github.com) a
(sk, pk) = (ax, g*") a < PRF(k, github.com)

Check if pk = X

\/ Unforgeable: The browser cannot
forge a signature under pk
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Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order g.
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\/Weak unlinkability: github.com cannot distinguish
pkqithub com from a random ECDSA public key.
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Contribution: Simple (weak) VIF construction

G = (g) is a group of prime order q. mpk = X = ¢ € G
msk = x € Z, k=H(X)
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xFuII unlinkability: Informally, browser cannot
generate public keys without the token (see paper).
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True2F protocol steps

\/O. Initialization (after purchasing a token)

-> Ensure token master secret incorporates good randomness.

\A . Registration (associating a token with an account)
-> Ensure per-site keys generated correctly.

2. Authentication (logging into an account)

[New]

[Modified]

[Modified]
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True2F protocol steps

\/O. Initialization (after purchasing a token) [New]

-> Ensure token master secret incorporates good randomness.

\A . Registration (associating a token with an account) [Modified]

-> Ensure per-site keys generated correctly.

2. Authentication (logging into an account) [Modified]
- Ensure authentication leaks no data.

Principle: Both browser and token contribute randomness to the protocol.
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Step #2: U2F Authentication

Log into an account.

gilthub.com,
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Security threat #1: Implementation bugs in token

github.com, github.com, /\
~ challenge challenge
signature signature | ;/

Choose signing nonce with

weak randomness github.com

Bad randomness in embedded devices:
[EZJ+14], [LHA+14], [INDWH14], [YRS+09] 49



Security threat #2: Supply-chain tampering

github.com, github. com,w
challenge challenge
. 9 . 9
signature signature | ;/
H_ide Skgithub .com in evil.com
signature

Subliminal channels: [Sim84], [Des88]
Unique signatures: [BLS01] 50



Firewalled ECDSA Signatures

Two ideas:

1. The token and browser use collaborative key generation to
generate a signing nonce.

2. Because of ECDSA malleability, signatures are re-randomized by the
browser.

... see paper for details.

[AMV15], [MS15], [DMS16]
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True2F protocol steps

\/O. Initialization (after purchasing a token)

-> Ensure token master secret incorporates good randomness.

\A . Registration (associating a token with an account)
-> Ensure per-site keys generated correctly.

\/2. Authentication (logging into an account)

-> Ensure authentication leaks no data.

[New]

[Modified]

[Modified]
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Other contributions (see paper)

e Cryptographic optimizations tailored to token hardware
o Offload hash-to-point to the browser
o Cache Verifiable Random Function outputs at the browser

e Flash-optimized data structure for storing U2F authentication counters
o Provides stronger unlinkability than many existing U2F tokens
o “Tear-resistant” and respects constraints of token flash
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Multiple Browsers

1. Token gives mpk to browser (protect against bugs)

2. Sync mpk across browser instances
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True2F evaluation

Google development
board running True2F.

Google production USB
token with same hardware
specs.

ARM SC-300 processor
clocked at 24 MHz
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True2F imposes minimal authentication overhead

B Collaborative Keygen B Browser
B VIF.Eval
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True2F imposes minimal authentication overhead

B Collaborative Keygen B Browser

B VIF.Eval
B ECDSA.Sign

Token
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True2F imposes minimal authentication overhead

B Collaborative Keygen B Browser
B VIF.Eval
B ECDSA.Sign

Token

No optimizations 446

Fast keygen only
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True2F imposes minimal authentication overhead

B Collaborative Keygen B Browser
BN VIF.Eval
B ECDSA.Sign

Token

No optimizations 446
Fast keygen only
Hash-to-point assist only

VREF caching only
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True2F imposes minimal authentication overhead

B Collaborative Keygen B Browser
B VIF.Eval
B ECDSA.Sign

Token

No optimizations 446

Fast keygen only
Hash-to-point assist only
VREF caching only
True2F (+ all)

U2F
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True2F imposes minimal authentication overhead

B Collaborative Keygen B Browser

B VIF.Eval
B ECDSA.Sign

Token

446

No optimizations IR e

Fast keygen only
Hash-to-point assist only
VREF caching only
True2F (+ all)
U2F

True2F only ~2.5x
slower than U2F
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Comparatively small end-to-end slowdown

I Protocol B Browser Overhead
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Comparatively small end-to-end slowdown
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True2F: Don’t settle for untrustworthy hardware

True2F
- Augments U2F to protect against backdoored tokens
- Backwards-compatible with existing U2F servers

Practical to deploy: performant on commodity hardware tokens

Next steps: help with FIDO adoption

Emma Dauterman
edauterman@cs.stanford.edu
https://arxiv.org/abs/1810.04660
https://github.com/edauterman/true2f
https://github.com/edauterman/u2f-ref-code
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