
True2F: Backdoor-resistant
authentication tokens

Emma Dauterman, Henry Corrigan-Gibbs, David Mazières,
Dan Boneh, Dominic Rizzo

Stanford and Google

IEEE Security & Privacy 2019

U2F: Effective hardware 2FA

2

U2F: Effective hardware 2FA

3

U2F protocol steps

 1. Registration (associating a token with an account)

 2. Authentication (logging into an account)

4

5

U2F Step #1: Registration

github.com github.com

pkgithub.com pkgithub.com

Associate a token with an account.

github.com

6

U2F Step #2: Authentication

github.com,
challenge

signature signature

github.com,
challenge

github.com

Log into an account.

7

github.com,
challenge

github.com

Even if malware takes over your browser,
it can’t authenticate without the token.

U2F defends against phishing and browser compromise

skgithub.com

8

github.com

… but what about vulnerabilities in the token itself?

skgithub.com

9

github.com

… but what about vulnerabilities in the token itself?

1.  Implementation bugs

2.  Supply-chain tampering

skgithub.com

Security threat #1: Implementation bugs in token

10 [NSS+17]

Security threat #1: Implementation bugs in token

11 [NSS+17]

Security threat #1: Implementation bugs in token

12 [NSS+17]

Security threat #1: Implementation bugs in token

13 [NSS+17]

Security threat #1: Implementation bugs in token

14 [NSS+17]

15

Security threat #2: Supply-chain tampering

True2F: U2F protections + faulty-token protection

16

True2F: U2F protections + faulty-token protection

17

 U2F protection

Browser learns no secrets.

True2F: U2F protections + faulty-token protection

18

 U2F protection

Browser learns no secrets.

 True2F addition: Faulty-token protection

Browser enforces correct behavior
to prevent token leaking secrets.

True2F: U2F protections + faulty-token protection

19

Goals:
●  Augment U2F to protect against faulty tokens

○  Same protections as U2F even if token is buggy or backdoored

●  Backwards-compatible with U2F server
○  Only requires changes to token and browser, not server

●  Practical on commodity hardware tokens
○  Evaluated on Google hardware

True2F: U2F protections + faulty-token protection

20

Goals:
●  Augment U2F to protect against faulty tokens

○  Same protections as U2F even if token is buggy or backdoored

●  Backwards-compatible with U2F server
○  Only requires changes to token and browser, not server

●  Practical on commodity hardware tokens
○  Evaluated on Google hardware

Design principles:
●  Both browser and token contribute randomness to the protocol.

●  Browser can verify all deterministic token operations.

True2F implementation

21

Google production USB
token with same hardware

specs.

Google development
board running True2F.

ARM SC-300 processor
clocked at 24 MHz

U2F protocol steps

 1. Registration (associating a token with an account)

 2. Authentication (logging into an account)

22

True2F protocol steps

 0. Initialization (after purchasing a token)

 1. Registration (associating a token with an account)

 2. Authentication (logging into an account)

23

[New]

[Modified]

[Modified]

True2F protocol steps

 0. Initialization (after purchasing a token)
➔  Ensure token master secret incorporates good randomness.

 1. Registration (associating a token with an account)

 2. Authentication (logging into an account)

24

Principle: Both browser and token contribute randomness to the protocol.

[New]

[Modified]

[Modified]

25

Step #0: Initialization

collaborative
key generation

26

collaborative
key generation

msk
mpk

Step #0: Initialization

27

Initialization: Security properties

msk
mpk

The token cannot
bias mpk.

[GJKR99], [CMBF13]

28

The token cannot
bias mpk.

The browser learns
nothing about msk.

Initialization: Security properties

msk
mpk

[GJKR99], [CMBF13]

29

The token cannot
bias mpk.

The browser learns
nothing about msk.

Initialization properties

Our protocol reduces the number of group operations
by 3x compared to [CMBF13] (see paper).

True2F protocol steps

 0. Initialization (after purchasing a token)
➔  Ensure token master secret incorporates good randomness.

 1. Registration (associating a token with an account)

 2. Authentication (logging into an account)

30

[New]

[Modified]

[Modified]

True2F protocol steps

 0. Initialization (after purchasing a token)
➔  Ensure token master secret incorporates good randomness.

 1. Registration (associating a token with an account)
➔  Ensure per-site keys generated correctly.

 2. Authentication (logging into an account)

31

Principle: Browser can verify all deterministic token operations.

[New]

[Modified]

[Modified]

32

 Step #1: U2F Registration

github.com github.com

pkgithub.com pkgithub.com

github.com

Associate a token with an account.

33

Security threat #1: Implementation bugs in token

github.com github.com

pkgithub.com pkgithub.com

github.com Generate (skgithub.com,
pkgithub.com) using weak randomness

Bad randomness in embedded devices:
[EZJ+14], [LHA+14], [NDWH14], [YRS+09]

34

Security threat #2: Supply-chain tampering

evil.com evil.com

pkevil.com pkevil.com

evil.com pkevil.com ← f(skgithub.com)

 skgithub.com← f -1(pkevil.com)

35

Verifiable Identity Families (VIFs)

msk
mpk

Derive server-specific keypairs in
a deterministic and verifiable
way from a master keypair.

36

Verifiable Identity Families (VIFs)

msk
mpk

Formally, we prove that VIFs
are unique, verifiable,
unlinkable, and unforgeable.

37

github.com

msk
mpk

Contribution: Simple (weak) VIF construction

38

github.com

Contribution: Simple (weak) VIF construction

39

github.com

Contribution: Simple (weak) VIF construction

40

github.com

Contribution: Simple (weak) VIF construction

41

github.com

 Unique: The token can produce
the unique keypair for github.com.

Contribution: Simple (weak) VIF construction

42

github.com

 Verifiable: The token can prove to the browser that
pkgithub.com is really the unique public key for github.com.

Contribution: Simple (weak) VIF construction

43

github.com

 Unforgeable: The browser cannot
forge a signature under pkgithub.com.

Contribution: Simple (weak) VIF construction

44

github.com

 Weak unlinkability: github.com cannot distinguish
pkgithub.com from a random ECDSA public key.

Contribution: Simple (weak) VIF construction

45

github.com

 Full unlinkability: Informally, browser cannot
generate public keys without the token (see paper).

Contribution: Simple (weak) VIF construction

True2F protocol steps

 0. Initialization (after purchasing a token)
➔  Ensure token master secret incorporates good randomness.

 1. Registration (associating a token with an account)
➔  Ensure per-site keys generated correctly.

 2. Authentication (logging into an account)

46

[New]

[Modified]

[Modified]

True2F protocol steps

 0. Initialization (after purchasing a token)
➔  Ensure token master secret incorporates good randomness.

 1. Registration (associating a token with an account)
➔  Ensure per-site keys generated correctly.

 2. Authentication (logging into an account)
➔  Ensure authentication leaks no data.

47

Principle: Both browser and token contribute randomness to the protocol.

[New]

[Modified]

[Modified]

48

 Step #2: U2F Authentication

github.com,
challenge

signature signature

github.com,
challenge

github.com

Log into an account.

49

Security threat #1: Implementation bugs in token

github.com,
challenge

signature signature

github.com,
challenge

github.com
Choose signing nonce with
weak randomness

Bad randomness in embedded devices:
[EZJ+14], [LHA+14], [NDWH14], [YRS+09]

50

Security threat #2: Supply-chain tampering

github.com,
challenge

signature signature

github.com,
challenge

evil.com
Hide skgithub.com in
signature

Subliminal channels: [Sim84], [Des88]
Unique signatures: [BLS01]

Firewalled ECDSA Signatures

Two ideas:

1.  The token and browser use collaborative key generation to
generate a signing nonce.

2.  Because of ECDSA malleability, signatures are re-randomized by the
browser.

… see paper for details.

51 [AMV15], [MS15], [DMS16]

True2F protocol steps

 0. Initialization (after purchasing a token)
➔  Ensure token master secret incorporates good randomness.

 1. Registration (associating a token with an account)
➔  Ensure per-site keys generated correctly.

 2. Authentication (logging into an account)
➔  Ensure authentication leaks no data.

52

[New]

[Modified]

[Modified]

Other contributions (see paper)

●  Cryptographic optimizations tailored to token hardware
○  Offload hash-to-point to the browser
○  Cache Verifiable Random Function outputs at the browser

●  Flash-optimized data structure for storing U2F authentication counters
○  Provides stronger unlinkability than many existing U2F tokens
○  “Tear-resistant” and respects constraints of token flash

53

Multiple Browsers

1.  Token gives mpk to browser (protect against bugs)

2.  Sync mpk across browser instances

54

True2F evaluation

55

Google production USB
token with same hardware

specs.

Google development
board running True2F.

ARM SC-300 processor
clocked at 24 MHz

56

True2F imposes minimal authentication overhead
Collaborative Keygen
VIF.Eval
ECDSA.Sign

Browser

To
ke

n

57

Collaborative Keygen
VIF.Eval
ECDSA.Sign

Browser

To
ke

n

True2F imposes minimal authentication overhead

58

Collaborative Keygen
VIF.Eval
ECDSA.Sign

Browser

To
ke

n

True2F imposes minimal authentication overhead

59

Collaborative Keygen
VIF.Eval
ECDSA.Sign

Browser

To
ke

n

True2F imposes minimal authentication overhead

60

Collaborative Keygen
VIF.Eval
ECDSA.Sign

Browser

To
ke

n

True2F imposes minimal authentication overhead

61

Collaborative Keygen
VIF.Eval
ECDSA.Sign

Browser

To
ke

n

True2F only ~2.5x
slower than U2F

True2F imposes minimal authentication overhead

62

Comparatively small end-to-end slowdown

63

Comparatively small end-to-end slowdown

True2F only 12-16%
slower than U2F

True2F: Don’t settle for untrustworthy hardware

64

True2F
-  Augments U2F to protect against backdoored tokens
-  Backwards-compatible with existing U2F servers

Practical to deploy: performant on commodity hardware tokens

Next steps: help with FIDO adoption

Emma Dauterman
edauterman@cs.stanford.edu

https://arxiv.org/abs/1810.04660
https://github.com/edauterman/true2f

https://github.com/edauterman/u2f-ref-code

References
[ACMT05] G. Ateniese, D. H. Chou, B. De Medeiros, and G. Tsudik. Sanitizable signatures. In ESORICS, 2005.
[BPR14] M.Bellare, K.G.Paterson,and P.Rogaway. Security of symmetric encryption against mass surveillance. In CRYPTO, 2014.
[BLS04] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. Journal of cryptology, 17(4), 2004.
[CBS04] S .Cabuk, C.E. Brodley, and C. Shields. IP covert timing channels: design and detection. In CCS, 2004.
[Des88] Y. Desmedt. Subliminal-free authentication and signature. In EUROCRYPT, 1988.
[DMS16] Y. Dodis, I. Mironov, and N. Stephens-Davidowitz. Message transmission with reverse firewalls—secure communication on corrupted machines. In

CRYPTO, 2016.
[DY05] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In PKC, 2005.
[EZJ+14] A. Everspaugh, Y. Zhai, R. Jellinek, T. Ristenpart, and M. Swift. Not-so-random numbers in virtualized Linux and the Whirlwind RNG. In Security and

Privacy. IEEE, 2014.
[GJKR99] Gennaro, Rosario, et al. "Secure distributed key generation for discrete-log based cryptosystems." International Conference on the Theory and

Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg, 1999.
[GRPV18] S. Goldberg, L. Reyzin, D. Papadopoulos, and J. Vcelak. Verifiable random functions (VRFs). IETF CFRG Internet-Draft (Standards Track), Mar. 2018.

https://tools.ietf.org/html/ draft-irtf-cfrg-vrf-01.
[LHA+12] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C. Wachter. Ron was wrong, Whit is right. Cryptology ePrint Archive, Report

2012/064, 2012.
[NDWH12] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining your Ps and Qs: Detection of widespread weak keys in network devices. In USENIX

Security Symposium, volume 8, page 1, 2012.
[Hu92] W.-M. Hu. Reducing timing channels with fuzzy time. Journal of computer security, 1(3-4):233–254, 1992.
[MRV99] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In FOCS, 1999.
[MS15] I. Mironov and N. Stephens-Davidowitz. Cryptographic reverse firewalls. In EUROCRYPT, 2015.
[NSS+17] M. Nemec, M. Sys, P. Svenda, D. Klinec, and V. Matyas. The return of Coppersmith’s Attack: Practical factorization of widely used RSA moduli. In CCS,

2017.
[Sim84] G. J. Simmons. The Prisoners’ Problem and the Subliminal Channel. In CRYPTO, 1984.
[YRS+09] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When private keys are public: results from the 2008 Debian OpenSSL vulnerability. In

IMC, 2009.

65

