
SoK:	Sanitizing	for	Security	

Dokyung	Song,	Julian	Lettner,	Prabhu	Rajasekaran,	
Yeoul	Na,	Stijn	Volckaert,	Per	Larsen,	Michael	Franz	

Finding Bugs in C/C++

May	2019	 2	

C/C++	Source	Code	

Code Review/Auditing

Static Analysis

Clang Static Analyzer

Dynamic Analysis Manual Analysis

american fuzzy lop

Hand-written test suite

libFuzzer

Program Inputs

AddressSanitizer
MemorySanitizer

Finding Bugs in C/C++

May	2019	 3	

C/C++	Source	Code	

Code Review/Auditing

Static Analysis

Clang Static Analyzer

Dynamic Analysis Manual Analysis

american fuzzy lop

AddressSanitizer
MemorySanitizer

Hand-written test suite

libFuzzer

Program Inputs

Dynamic Analysis Tools for C/C++

•  More than 35 years of research in Dynamic Analysis Tools – often-called “Sanitizers”
– that find vulnerabilities specific to C/C++

May	2019	 4	

Bcc

Memcheck

Dr. Memory

LBC

ASan

Electric Fence

PageHeap D&A Safe-C P&F

MSCC

SoftBounds+CETS

CRED BBC

EffectiveSan

PAriCheck

Low-Fat

DangSan

DangNull

1990 2000 2005 2010 2015

RTCC

2019

TypeSan

TySan

CaVer

CUP

SGXBounds
FreeSentry

MSan

Oscar

CRCount

UBSan

1995

HexType

Purify

1980

Undangle

Exploit Mitigation vs. Sanitization (1/2)

May	2019	 5	

Attack Flow
Function Pointer Overwrite Indirect Call Heap Overflow Integer Overflow +

Exploit Mitigation vs. Sanitization (1/2)

May	2019	 6	

Attack Flow
Function Pointer Overwrite Indirect Call Heap Overflow Integer Overflow +

Exploit Mitigation Security Policies

Control-Flow Integrity Memory Safety Code Pointer Integrity

AddressSanitizer UndefinedBehaviorSanitizer
… and many others

Sanitization Policies

Exploit Mitigation vs. Sanitization (1/2)

May	2019	 7	

Attack Flow
Function Pointer Overwrite Indirect Call Heap Overflow Integer Overflow +

Exploit Mitigation Security Policies

Control-Flow Integrity Memory Safety Code Pointer Integrity

Sanitization Policies

AddressSanitizer UndefinedBehaviorSanitizer
… and many others

Exploit Mitigation vs. Sanitization (2/2)

May	2019	 8	

Exploit Mitigation Sanitization

The goal is to … Mitigate attacks Find vulnerabilities

Used in … Production Pre-release

Performance budget is … Very limited Much higher

Policy violation leads to … Program termination Problem diagnosis

Violations triggered at location of bug Sometimes Always

Tolerance for FPs is … Zero Somewhat higher

Surviving benign errors is … Desired Not desired

Undefined Behavior in C/C++

•  Buffer	overflow	
•  Use-after-free	
•  Type	errors	
•  Format	string	bug	
•  Signed	integer	overflow	
•  Null	pointer	dereferences	
•  etc.	

9	May	2019	

J.2 Undefined behavior
The behavior is undefined in the following circumstances: …

— Addition or subtraction of a pointer into, or just beyond, an

array object and an integer type produces a result that does not
point into, or just beyond, the same array object (6.5.6).

…

— An object is referred to outside of its lifetime (6.2.4).
…

— A pointer is used to call a function whose type is not

compatible with the referenced type.
…
— An object has its stored value accessed other than by an lvalue

of an allowable type (6.5).
…

Undefined Behavior in C/C++

•  Buffer	overflow	
•  Use-after-free	
•  Type	errors	
•  Format	string	bug	
•  Signed	integer	overflow	
•  Null	pointer	dereferences	
•  etc.	

10	May	2019	

J.2 Undefined behavior
The behavior is undefined in the following circumstances: …

— Addition or subtraction of a pointer into, or just beyond, an

array object and an integer type produces a result that does not
point into, or just beyond, the same array object (6.5.6).

…

— An object is referred to outside of its lifetime (6.2.4).
…

— A pointer is used to call a function whose type is not

compatible with the referenced type.
…
— An object has its stored value accessed other than by an lvalue

of an allowable type (6.5).
…

→	Well-known	Security	Vulnerabilities	

mov rsi, QWORDPTR[rdi+8]

Security Implications of Undefined Behavior in C/C++
(1/2)

May	2019	 11	

Compile	

Source	Code	 Binary	Code	

sk = tun->sk;
Null-pointer	
Dereference	

Null-pointer	
Dereference	

tun=NULL	

1. Memory and type safety violations vulnerable to memory exploits

if (!tun)
 return POLLERR;

 // privileged code	

Security Implications of Undefined Behavior in C/C++
(2/2)

May	2019	 12	

?Compile	

sk = tun->sk;

Source	Code	 Binary	Code	

Null-pointer	
Dereference	

tun=NULL	

2. Compilation of a program having UBs may result in vulnerable code

if (!tun)
 return POLLERR;

 // privileged code	

Security Implications of Undefined Behavior in C/C++
(2/2)

May	2019	 13	

?Compile	

sk = tun->sk;

Source	Code	 Binary	Code	

Null-pointer	
Dereference	

tun=NULL	

2. Compilation of a program having UBs may result in vulnerable code

Null pointer check gets eliminated
(akin to CVE-2009-1897)

Compile	

if (!tun)
 return POLLERR;

 // privileged code	

mov rsi, QWORDPTR[rdi+8]

Security Implications of Undefined Behavior in C/C++
(2/2)

May	2019	 14	

sk = tun->sk;

 // privileged code	 Privilege	
Escalation	

Source	Code	 Binary	Code	Null pointer check gets eliminated
(akin to CVE-2009-1897)

Null-pointer	
Dereference	

tun=NULL	

2. Compilation of a program having UBs may result in vulnerable code

Low-Level Vulnerabilities in C/C++ (1/2)

15	

Spatial Memory
Safety Violation

Temporal
Memory Safety

Violation

Use of
Uninitialized

Variables
Pointer Type

Errors

Bad Casting

Other Pointer
Type Errors

Variadic
Function Misuse

Other
Vulnerabilities

Integer
Overflow

Other UBs

May	2019	

•  Most of these vulnerabilities can manifest as memory and type safety
violations.

Spatial Memory
Safety Violation

Temporal
Memory Safety

Violation

Use of
Uninitialized

Variables
Pointer Type

Errors

Bad Casting

Other Pointer
Type Errors

Variadic
Function Misuse

Other
Vulnerabilities

Integer
Overflow

Other UBs

Low-Level Vulnerabilities in C/C++ (2/2)

May	2019	 16	

•  Some UBs may lead to unsafe code generation today.
•  And, things can change as compiler optimizations evolve – called time-

bombs*.

*  W. Dietz, P. Li, J. Regher, and V. Adve; “Understanding integer overflow in C/C++.” In ICSE, 2012.

Spatial Memory
Safety Violation

Temporal
Memory Safety

Violation

Use of
Uninitialized

Variables
Pointer Type

Errors

Bad Casting

Other Pointer
Type Errors

Variadic
Function Misuse

Other
Vulnerabilities

Integer
Overflow

Other UBs

Low-Level Vulnerabilities in C/C++ (2/2)

May	2019	 17	

•  Some UBs may lead to unsafe code generation today.
•  And, things can change as compiler optimizations evolve – called time-

bombs*.

*  W. Dietz, P. Li, J. Regher, and V. Adve; “Understanding integer overflow in C/C++.” In ICSE, 2012.

-fno-delete-null-
pointer-checks

-ftrivial-auto-
var-init=zero

-fno-strict-
aliasing

-fwrapv
-ftrapv

Sanitizer Design and Implementation

May	2019	 18	

Bug Finding Technique

Metadata Management Program Instrumentation

Spatial Memory
Safety Violation

Red-zone
Insertion

(Guard Pages)

Per-pointer
Bounds

Tracking

Per-object
Bounds

Tracking

Temporal
Memory Safety

Violation

Reuse Delay

Lock-and-key

Dangling
Pointer
Tagging

Use of
Uninitialized

Variables

Uninitialized
Memory Read

Detection

Uninitialized
Value Use
Detection

Pointer Type
Errors

Pointer
Casting
Monitor

Pointer Use
Monitor

Variadic Function
Misuse

Dangerous
Format String

Detection

Argument
Mismatch
Detection

Other
Vulnerabilities

Stateless
Monitoring

(a) Dynamic Metadata (b) Static Metadata

Object

…

Pointer

…

Em
be

dd
ed

D

is
jo

in
t

(a) Language-level
Instrumentation

(b) IR-level
Instrumentation

(c) Binary
Instrumentation

check(); call check

store ptr

111011101010
101010110101
010101011010

*ptr = 3;

Others

Instruction

Sanitizer Design and Implementation: Bug Finding
Techniques

19	

Spatial Memory
Safety Violation

Red-zone
Insertion

(Guard Pages)

Per-pointer
Bounds

Tracking

Per-object
Bounds

Tracking

Temporal
Memory Safety

Violation

Reuse Delay

Lock-and-key

Dangling
Pointer
Tagging

Use of
Uninitialized

Variables

Uninitialized
Memory Read

Detection

Uninitialized
Value Use
Detection

Pointer Type
Errors

Pointer
Casting
Monitor

Pointer Use
Monitor

Variadic Function
Misuse

Dangerous
Format String

Detection

Argument
Mismatch
Detection

Other
Vulnerabilities

Stateless
Monitoring

May	2019	

Class of Bugs

Bug Finding
Technique

Bug Finding Techniques

store ptr*ptr = 3;

May	2019	 20	

Source	code	
(C/C++)	

Intermediate	Representation	
(e.g.,	LLVM	IR)	 Binary	

(a) Language-level (b) IR-level (c) Binary-level

check(); call check 11101110101
01010101101
01010101011
0101

Inlined Reference Monitor:
Fine-grained run-time monitoring
of program behavior to detect
bugs as they occur.

Compiler	
Frontend	

Compiler	
Backend	

(d) Library Interposition
LD_PRELOAD	for instrumenting only
calls to dynamically-linked external

library functions

External
Libraries

Sanitizer Design and Implementation: Program
Instrumentation

Program Instrumentation

call

(a) Dynamic Metadata (b) Static Metadata

Others

Instruction Object Pointer

Sanitizer Design and Implementation: Metadata
Management

May	2019	 21	

Em
be

dd
ed

D

is
jo

in
t

•  Result type of a casting
operation

•  Function type used in an
indirect/variadic call

•  Embedded
before, after,
and within an
object

•  Fat pointer
•  Tagged pointer

•  Two-level trie
•  Custom

•  Direct-mapped
•  Multi-level
•  Hash table •  Class hierarchy

•  Type aliasing information

Original program

Sanitizer-instrumented
program Needs to be created and propagated at run time

Metadata Management

Sanitizer Design and Implementation: Precision and
Overheads

May	2019	 22	

Bug Finding Technique

Metadata Management Program Instrumentation

Spatial Memory
Safety Violation

Red-zone
Insertion

(Guard Pages)

Per-pointer
Bounds

Tracking

Per-object
Bounds

Tracking

Temporal Memory
Safety Violation

Reuse Delay

Lock-and-key

Dangling
Pointer
Tagging

Use of
Uninitialized

Variables

Uninitialized
Memory Read

Detection

Uninitialized
Value Use
Detection

Pointer Type
Errors

Pointer
Casting
Monitor

Pointer Use
Monitor

Variadic Function
Misuse

Dangerous
Format String

Detection

Argument
Mismatch
Detection

Other
Vulnerabilities

Stateless
Monitoring

(a) Dynamic Metadata (b) Static Metadata

Object

…

Pointer

…

Em
be

dd
ed

D

is
jo

in
t

(a) Language-level
Instrumentation

(b) IR-level
Instrumentation

(c) Binary
Instrumentation

check(); call check

store ptr

1110111010101
0101011010101
0101011010*ptr = 3;

Others

Instruction

Fa
ls

e
po

si
tiv

es

True negatives

Fa
ls

e
ne

ga
tiv

es

True positives

Performance and Memory Overheads

Bug Detection Precision and Compatibility

Our Analysis of Sanitizers

•  Our analysis of 37 tools
•  We benchmarked 10 publicly available

sanitizers on the same experimental platform
(
https://github.com/securesystemslab/
sanitizing-for-security-benchmarks)

•  Main observations
•  Performance is not a primary concern
•  Many false positives (marked as) in tools

other than widely-used ones such as ASan
•  Most of tools only have partial coverage of

bugs ()
•  Widely deployed tools such as ASan have

even smaller coverage

May	2019	 23	

Precision: False Positives and False Negatives

May	2019	 24	

Well-defined programs
w.r.t. the ISO Standard

Programs	conforming	
to	the	ISO	standard	

Precision: False Positives and False Negatives

May	2019	 25	

Well-defined programs
w.r.t. the ISO Standard

Programs	conforming	
to	the	ISO	standard	

Precision: False Positives and False Negatives

May	2019	 26	

Well-defined programs
w.r.t. the ISO Standard

Programs	conforming	
to	the	ISO	standard	

e.g.,	programs	
creating	OOB	pointers	

Addition or subtraction of a
pointer into, or just beyond, an
array object and an integer type
produces a result that does not
point into, or just beyond, the
same array object.*

*  ISO/IEC JTC1/SC22/WG14. ISO/IEC 9899:2011, Programming Languages — C

Precision: False Positives and False Negatives

May	2019	 27	

*  K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall, R. N. M. Watson, and P. Sewell. Into the Depths of C: Elaborating the De Facto Standards. In PLDI’16

But in practice it seems to
be common to transiently
construct out-of-bounds
pointers.*

e.g.,	programs	
creating	OOB	pointers	

Programs	conforming	to	
the	de	facto	standard	
Programs	conforming	
to	the	ISO	standard	

Real-world programs
(Or De Facto Standard)

Precision: False Positives and False Negatives

May	2019	 28	

Programs	disallowed	by	
the	policy	
A	typical	sanitizer	policy	

Fa
ls

e
po

si
tiv

es

True negatives

Fa
ls

e
ne

ga
tiv

es

True positives

Programs	conforming	to	
the	de	facto	standard	
Programs	conforming	
to	the	ISO	standard	

Reducing Precision Gaps (1/2): Standard
Compatibility

May	2019	 29	

Programs	disallowed	by	
the	policy	
A	typical	sanitizer	policy	

Compatibility with the ISO and de facto standards

Programs	conforming	to	
the	de	facto	standard	
Programs	conforming	
to	the	ISO	standard	

Reducing Precision Gaps (1/2): Standard
Compatibility

•  Many programs transiently construct OOB pointers (de facto standards)
•  Thus, supporting this code idiom increases a tool’s applicability

•  Many tools, however, do not permit transient construction of OOB pointers
•  Some bounds checking tools invalidate pointers as soon as they go OOB
•  Dangling pointer tagging tools may incorrectly invalidate pointers, if OOB pointers are transiently

stored in memory

•  Many tools only support ISO standard compatibility by adding one byte between
objects – this is not enough in practice

May	2019	 30	

Reducing Precision Gaps (2/2): Finding Elusive Bugs

May	2019	 31	

Programs	disallowed	by	
the	policy	
A	typical	sanitizer	policy	
Programs	conforming	to	
the	de	facto	standard	
Programs	conforming	
to	the	ISO	standard	

Finding bugs that elude existing or widely-deployed sanitizers

Reducing Precision Gaps (2/2): Finding Elusive Bugs

•  Subclasses of memory safety violations
that elude AddressSanitizer:

•  Intra-object buffer overflow
•  Buffer overflow into a valid but unintended

object
•  Uses of freed memory that are being

reused

•  Type errors beyond bad casting
(static_casts)

•  C programs or C++ programs using C-style
casts and reinterpret_casts

•  Type errors are UBs that may silently break
programs if does not instruct the compiler
using flags like -fno-strict-
aliasing

May	2019	 32	

Reducing Precision Gaps (2/2): Finding Elusive Bugs

•  Finding these elusive bugs, in general, requires more precise dynamic metadata
tracking

•  Tracking per-pointer metadata such as pointer bounds
•  Tracking effective types of object storage in memory

•  However, such metadata tracking poses precision and performance challenges
•  C’s weak type safety (e.g., pointer to integer casts, uses of void pointers) makes

pointer metadata tracking difficult
•  The C standard has complex effective type and aliasing rules

•  More research is needed in developing sanitizers that can find these elusive bugs
while maintaining good compatibility

May	2019	 33	

fatptr=fat(ptr);

Pointer Metadata Tracking Challenges: Uninstrumented
Code

May	2019	 34	

Instrumented Uninstrumented

Fat pointer is not compatible with
uninstrumented code

Disjoint pointer metadata can get outdated,
when uninstrumented code updates a pointer

without updating corresponding metadata

Uninstrumented

*fatptr

*mem=new_ptr;

check_bnds(ptr);

Instrumented

ptr=*mem;

*ptr;

Pointer Metadata Tracking Challenges: Pointer to Integer
Casts

•  Even with full instrumentation (via, e.g., dynamic binary translation), sanitizers can
break programs having pointer to integer casts

•  Incompatible with fat/tagged pointers

•  Disjoint pointer metadata can be a choice, but full pointer flow tracking across casts
between pointers and integers can be expensive

•  Existing tools stop tracking pointer metadata once they are cast to integers

May	2019	 35	

some_object_type * → uint64_t

Pointer Metadata Tracking Challenges: Multi-threaded
Programs

•  Race-free programs that use atomic operations can be problematic
•  Concurrent atomic operations from different threads without putting corresponding metadata

operations into the same atomic unit can make metadata go out-of-sync

•  Example of naïve instrumentation:

May	2019	 36	

atomic_store(addr_of_ptr, ptrA);

atomic_store(addr_of_ptr, ptrB);

*metadata_of_ptr = metadata_of_ptrA;

*metadata_of_ptr = metadata_of_ptrB;

Thread A Thread B

Instrumented code
metadata for ptr out-of-sync!

❶
❷

❸

❹

Type Error Detection Challenges

•  Rules about determining an effective type of a stored value (i.e., effective type rules)
are complex, due to weakly-typed nature of C

•  Prevalent uses of void pointer type and (omnipotent) character pointer type
•  malloc returns void *
•  memcpy-family of functions take and return void *

•  Type punning through C-style casts and union

•  There are some tools that implement over-approximations of effective type rules, but
precision and performance trade-offs are yet to be explored.

•  Also, type error checking itself can be costly, because C’s aliasing rules permit a
stored value to be accessed by using pointers of many different types

May	2019	 37	

Other Future Research Directions

Composing sanitizers
•  Can find bugs closer to their

source without generating
duplicated bug reports for the
bug’s side-effects

Using hardware features
to improve performance
and compatibility
•  e.g., Pointer tagging/memory

tagging support in HW

Kernel and bare metal
support
•  Sanitizers for OS kernels, or

non-user-space programs in
general

May	2019	 38	

Q & A

Thank you!

Dokyung	Song	
Ph.D.	Student	at	UC	Irvine	

dokyungs@uci.edu	

39	May	2019	

