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Dynamic Analysis Tools for C/C++

* More than 35 years of research in Dynamic Analysis Tools — often-called “Sanitizers”
— that find vulnerabilities specific to C/C++

Oscar
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SoftBounds+CETS SGXBounds TySan

Dr. Memory CaVer EffectiveSan

Purify MSCC LBC TypeSan CUP
Electric Fence Memcheck  PAriCheck UBSan MSan DangSan
Bcce RTCC Safe-C  P&F PageHeap CRED D&A BBC ASan  DangNull Low-Fat CRCount
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Exploit Mitigation vs. Sanitization (1/2)

Attack Flow

Integer Overflow — Heap Overflow + Function Pointer Overwrite — [ndirect Call




Exploit Mitigation vs. Sanitization (1/2)

Exploit Mitigation Security Policies

Sanitization Policies
< >

Memory Safety Code Pointer Integrity Control-Flow Integrity

Attack Flow
Integer@erﬂow — Heap &rﬂow + Function Poi@r Overwrite — ]na’irec@'all

| |

UndefinedBehaviorSanitizer AddressSanitizer

... and many others
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Exploit Mitigation vs. Sanitization (2/2)

Exploit Mitigation

Sanitization

The goal is to ... Mitigate attacks Find vulnerabilities
Used in ... Production Pre-release
Performance budget is ... Very limited Much higher

Policy violation leads to ...

Program termination

Problem diagnosis

Violations triggered at location of bug | Sometimes Always
Tolerance for FPs is ... Zero Somewhat higher
Surviving benign errors is ... Desired Not desired
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Undefined Behavior in C/C++

Buffer overflow
e Use-after-free

* Type errors

* Format string bug

Signed integer overflo

Null pointer dereferences

* etc.
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J.2 Undefined behavior
The behavior is undefined in the following circumstances: ...

— Addition or subtraction of a pointer into, or just beyond, an

array object and an integer type produces a result that does not
point into, or just beyond, the same array object (6.5.6).

— An object is referred to outside of its lifetime (6.2.4).

— A pointer is used to call a function whose type is not
compatible with the referenced type.

— An object has its stored value accessed other than by an Ivalue
of an allowable type (6.5).




Undefined Behavior in C/C++

Buffer overflow
e Use-after-free

* Type errors

* Format string bug

Signed integer overflo

Null pointer dereferences
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- Well-known Security Vulnerabilities

J.2 Undefined behavior
The behavior is undefined in the following circumstances: ...

— Addition or subtraction of a pointer into, or just beyond, an

array object and an integer type produces a result that does not
point into, or just beyond, the same array object (6.5.6).

— An object is referred to outside of its lifetime (6.2.4).

— A pointer is used to call a function whose type is not
compatible with the referenced type.

— An object has its stored value accessed other than by an Ivalue
of an allowable type (6.5).
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Security Implications of Undefined Behavior in C/C++
(1/2)

1. Memory and type safety violations vulnerable to memory exploits

tun=NULL

poiter X l )
NUPOINTET A | sk = tun->sk; — -
erererence mov rsi, QWORDPTR[rdi+8] Null-pointer

Dereference
Compile >

Source Code Binary Code
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Security Implications of Undefined Behavior in C/C++
(2/2)

2. Compilation of a program having UBs may result in vulnerable code

tun=NULL

l

_DOI o
Null pomterM sk = tun->sk;

Dereference
if (!tun)
return POLLERR; .
Compile

*\J

// privileged code

y

Source Code Binary Code
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Security Implications of Undefined Behavior in C/C++
(2/2)

2. Compilation of a program having UBs may result in vulnerable code

tun=NULL

l

Null-pointer &
sk = tun->sk;
DereferenceM
if (!tun) _
return POLLERR; <. Compile > )
< ®
\
// privileged code \\
4 \
\
v
Source Code Null pointer check gets eliminated Binary Code

(akin to CVE-2009-1897)
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Security Implications of Undefined Behavior in C/C++

(2/2)

2. Compilation of a program having UBs may result in vulnerable code

tun=NULL

l

Null-pointer &
sk = tun->sk:;
DereferenceM !

if (!tun)
return POLLERR;

// privileged code

y \

Null pointer check gets eliminated Binary Code

Source Code
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(akin to CVE-2009-1897)

// privileged code

mov rsi, QWORDPTR[rdi+8]

Privilege
Escalation




Low-Level Vulnerabilities in C/C++ (1/2)

: Temporal Use of . ) e
Spatial Memory Memory Safety Uninitialized Pomter Type V?madl(.: Othe.r. :
Safety Violation o : Errors Function Misuse Vulnerabilities
Violation Variables
|| . | | Integer
Bad Casting Overflow
|| Other Pointer L Other UBs
Type Errors

J/ . J/

* Most of these vulnerabilities can manifest as memory and type safety
violations.
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Low-Level Vulnerabilities in C/C++ (2/2)

: Temporal Use of . | o |
Spatial VSO Memory Safety Uninitialized ETET Ih75E Vgrladlq Othe'r. :
Safety Violation C : Errors Function Misuse Vulnerabilities

Violation Variables ) )
a . | | Integer
Bad Casting Overflow
| | Other Pointer L Other UBs
Type Errors

* Some UBs may lead to unsafe code generation today.

* And, things can change as compiler optimizations evolve — called time-
bombs*.

W. Dietz, P. Li, J. Regher, and V. Adve; “Understanding integer overflow in C/C++.” In ICSE, 2012.
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Low-Level Vulnerabilities in C/C++ (2/2)

: Temporal Use of . | o |
Spatial VSO Memory Safety Uninitialized ETET Ih75E Vgrladlq Othe.r »
Safety Violation C : Errors Function Misuse Vulnerabilities

Violation Variables ) )
-ftrivial-auto- — Bad Casting ()Intefgler
var-init=zero _fwrapv —L vertiow
) ’ -ftrapv (/

Other Pointer

- — Other UBs
-fno-strict- Type Errors

aliasing ZL_

-fno-delete-null-
pointer-checks

* Some UBs may lead to unsafe code generation today.

* And, things can change as compiler optimizations evolve — called time-
bombs*.

W. Dietz, P. Li, J. Regher, and V. Adve; “Understanding integer overflow in C/C++.” In ICSE, 2012.
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/

check();

*ptr = 3;

(a) Language-level

\Instrumentation
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call check

store ptr

(b) IR-level

Instrumentation

Bug Finding Technique

Program Instrumentation

111011101010
101010110101
010101011010

(c) Binary
Instrumentation

. Temporal N .
gp?nala([elmt?ry Memorg Safety Varlai/llq Function
afety Violation Violation isuse
Red-zone Dangerous
Insertion [ Reuse Delay Format String
(Guard Pages) Detection
Per-pointer Argument
Bounds M Lock-and-key Mismatch
Tracking Detection
Per-object Dangling
Bounds L Pointer
Tracking Tagging

Metadata Management

Sanitizer Design and Implementation

~

~N

4 N\
§ (a) Dynamic Metadata (b) Static Metadata
o)
(]
E Instruction
L= N A
g
> Others
\Q /.
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Sanitizer Design and Implementation: Bug Finding
Techniques

Bug Finding Techniques

~N

~N

: Temporal Use of . o :
Spatial Memory PR Pointer Type Variadic Function Other
Class of Bugs Safety Violation Memory Safety Uninitialized Errors Misuse Vulnerabilities
Violation Variables
7~ e N e N e \ e e N
Red-zone Uninitialized Pointer Dangerous Stateless
—  Insertion — Reuse Delay — Memory Read — Casting — Format String Monitorin
(Guard Pages) Detection Monitor Detection g
Bug Flndlng Per-pointer Uninitialized Pointer Use Argument
Technique — Bounds — Lock-and-key —  Value Use 1 Monitor —  Mismatch
Tracking Detection Detection
Per-object Dangling
— Bounds — Pointer
\ Tracking Tagging
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Sanitizer Design and Implementation: Program
Instrumentation

Program Instrumentation

Inlined Reference Monitor:
Fine-grained run-time monitoring
of program behavior to detect

bugs as they occur. |

Source code Intermediate Representation Binar extornal

Xxterna
C/C++) (e.g., LLVM IR) V' call/d ribearies
\
chack(); | 3 1 call check B | y
ptr = 3 q store ptr q ororo101001 ¥~ (d) Library Interposition
Compile Compiler | %10% LD PRELOAD for instrumenting only
;7 Frontend [/ Backend 7 calls to dynamically-linked external
library functions
(a) Language-level (b) IR-level (c) Binary-level
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Sanitizer Design and Implementation: Metadata
Management

Metadata Management

4 . N ) 4 :
(a) Dynamic Metadata Original program (b) Static Metadata
: : A -
- Object Pointer é Instruction
O) .
S, * Embedded . : * Result type of a castin
5! before, after, Fat pomter‘ operatio}rllp :
o A » Tagged pointer _ .
= and within an * Function type used in an
= object indirect/variadic call
= e Direct-mapped . Others
:i e Multi-level » Two-level trie |
.‘Qﬁ « Hash table e Custom A * C(Class hloerr«:lrch.y |
* Type aliasing information
NS / Sanitizer-instrumented (N /
Needs to be created and propagated at run time program
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Sanitizer Design and Implementation: Precision and
Overheads

Bug Detection Precision and Compatibility

Spatial Memory Temporal Memory| Uni‘xjf lfzed Pointer Type Variadic Function Other
Safety Violation Saft lation Variables Errors Misuse Vulnerabilities True pOSitiVeS
D
Red-zone Uninitialized Pointer Dangerous Statel
Insertion Reuse Delay Memory Read Casting Format String M a.f c88
(Guard Pages) Detection Monitor Detection onitoring N
@ = é
Per-point Uninitialized . . Argument o é
Bound Lock-and-key Value Use Pinter Use Mismatch 4
Tracking Detection | | Monter Detection =
<
20 s
Perobet E—— g True negatives
Bounds Pointer
Tracking Tagging g
— D
= B
F

Bug Finding Technique ﬁ

Performance and Memory Overheads

/ Program Instrumentation Metadata Management \ { =) | L'l
S [ e R @(a) Dynamic Metadata (b) Static Metadata ' II'"I'III "IIl'“ 0 III"'lllllll I I
S 3
'q'é Object Pointer Instruction == :
B =l
=
(a) Language-level (b) IR-level (c) Binary 2 Others
\Instrumentation Instrumentation Instrumentation & IR

_/

May 2019




Our Analysis of Sanitizers

* Our analysis of 37 tools

We benchmarked 10 publicly available
sanitizers on the same experimental platform

(

https://github.com/securesystemslab/
sanitizing-for-security-benchmarks)

 Main observations

May 2019

Performance is not a primary concern

Many false positives (marked as ) in tools
other than widely-used ones such as ASan

Most (@) @) @ ly have partial coverage of
bugs (

Widely deployed tools such as ASan have
even smaller coverage

Sanitizers IV. Bug Finding Techniques V. Instr. | VI. Metadata Mgmt. VIII. Analysis
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Precision: False Positives and False Negatives

Well-defined programs
w.r.t. the ISO Standard

Programs conforming
to the ISO standard
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Precision: False Positives and False Negatives

- D _ e.g., programs
] creating OOB pointers
N = = = {1
_ﬁ Addition or subtraction of a

pointer into, or just beyond, an
Well-detined programs array object and an integer type

w.r.t. the ISO Standar % produces a result that does not
point into, or just beyond, the

same array object.* 99

Programs conforming
to the ISO standard

ISO/IEC JTC1/SC22/WG14. ISO/IEC 9899:2011, Programming Languages — C
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Precision: False Positives and False Negatives

, €.8., programs
creating OOB pointers

€€ Bt in practice it seems to
be common to transiently

(Or De Facto Standard) cmstructﬂ{out—oﬁbounds
% pointers.* 3)

Programs conforming to
the de facto standard

Programs conforming
to the ISO standard

K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall, R. N. M. Watson, and P. Sewell. Into the Depths of C: Elaborating the De Facto Standards. In PLDI’16
27
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Precision: False Positives and False Negatives

True positives

False negatives

[l

True negatives

Programs disallowed by
the policy
A typical sanitizer policy

Programs conforming to
the de facto standard

Programs conforming
to the ISO standard
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Reducing Precision Gaps (1/2): Standard

Compatibility

Compatibility with the ISO and de facto standards

Programs disallowed by
the policy

A typical sanitizer policy
Programs conforming to
the de facto standard

Programs conforming
to the ISO standard




Reducing Precision Gaps (1/2): Standard
Compatibility

* Many programs transiently construct OOB pointers (de facto standards)
* Thus, supporting this code idiom increases a tool’s applicability

* Many tools, however, do not permit transient construction of OOB pointers
* Some bounds checking tools invalidate pointers as soon as they go OOB

* Dangling pointer tagging tools may incorrectly invalidate pointers, if OOB pointers are transiently
stored in memory

* Many tools only support ISO standard compatibility by adding one byte between
objects — this 1s not enough in practice
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Reducing Precision Gaps (2/2): Finding Elusive Bugs

Finding bugs that elude existing or widely-deployed sanitizers

Programs disallowed by
the policy
O A typical sanitizer policy

Programs conforming to
the de facto standard

Programs conforming
to the ISO standard
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Reducing Precision Gaps (2/2): Finding Elusive Bugs

 Subclasses of memory safety violations * Type errors beyond bad casting
that elude AddressSanitizer: (static casts)
* Intra-object buffer overflow e C programs or C++ programs using C-style
* Buffer overflow into a valid but unintended casts and reinterpret_casts

object * Type errors are UBs that may silently break
programs 1f does not instruct the compiler
using flags like —-fno-strict-
aliasing

* Uses of freed memory that are being
reused
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Reducing Precision Gaps (2/2): Finding Elusive Bugs

* Finding these elusive bugs, in general, requires more precise dynamic metadata
tracking

* Tracking per-pointer metadata such as pointer bounds
* Tracking effective types of object storage in memory

* However, such metadata tracking poses precision and performance challenges

* C’s weak type safety (e.g., pointer to integer casts, uses of void pointers) makes
pointer metadata tracking difficult

* The C standard has complex effective type and aliasing rules

* More research 1s needed in developing sanitizers that can find these elusive bugs
while maintaining good compatibility
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Pointer Metadata Tracking Challenges: Uninstrumented

Instrumented

fatptr=fat(ptr);
|

Uninstrumented

v

*fatptr *

Code

Instrumented

Uninstrumented

*mem=new_ptr;

v

ptr=*mem;

* check bnds(ptr);
*ptr;

Disjoint pointer metadata can get outdated,
when uninstrumented code updates a pointer
without updating corresponding metadata

Fat pointer is not compatible with
uninstrumented code
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Pointer Metadata Tracking Challenges: Pointer to Integer
Casts

* Even with full instrumentation (via, e.g., dynamic binary translation), sanitizers can
break programs having pointer to integer casts

some object type * — uinté64 t

* Incompatible with fat/tagged pointers

* Disjoint pointer metadata can be a choice, but full pointer flow tracking across casts
between pointers and integers can be expensive

* Existing tools stop tracking pointer metadata once they are cast to integers
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Pointer Metadata Tracking Challenges: Multi-threaded
Programs

* Race-free programs that use atomic operations can be problematic

* Concurrent atomic operations from different threads without putting corresponding metadata
operations into the same atomic unit can make metadata go out-of-sync

* Example of naive instrumentation:

Thread A Thread B

@ atomic store(addr of ptr, ptrA);
® atomic store(addr of ptr, ptrB);

® *metadata of ptr = metadata of ptrB;

@ *metadata of ptr = metadata of ptrA;

metadata for ptr out-of-sync!
Instrumented code
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Type Error Detection Challenges

* Rules about determining an effective type of a stored value (1.e., effective type rules)
are complex, due to weakly-typed nature of C
* Prevalent uses of void pointer type and (omnipotent) character pointer type

* malloc returns void *
* memcpy-family of functions take and return void *

* Type punning through C-style casts and union

* There are some tools that implement over-approximations of effective type rules, but
precision and performance trade-offs are yet to be explored.

* Also, type error checking itself can be costly, because C’s aliasing rules permit a
stored value to be accessed by using pointers of many different types

May 2019



May 2019

Other Future Research Directions

Composing sanitizers

 Can find bugs closer to their
source without generating
duplicated bug reports for the
bug’s side-effects

Using hardware features
to improve performance
and compatibility

* ¢.g., Pointer tagging/memory
tagging support in HW

support

general

Kernel and bare metal

« Sanitizers for OS kernels, or
non-user-space programs in




Q&A

Thank you!

Dokyung Song
Ph.D. Student at UC Irvine
dokyungs@uci.edu
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