
SoK:	Sanitizing	for	Security	

Dokyung	Song,	Julian	Lettner,	Prabhu	Rajasekaran,	
Yeoul	Na,	Stijn	Volckaert,	Per	Larsen,	Michael	Franz	



Finding Bugs in C/C++ 

May	2019	 2	

C/C++	Source	Code	

Code Review/Auditing 

Static Analysis 

Clang Static Analyzer 

Dynamic Analysis Manual Analysis 

american fuzzy lop 

Hand-written test suite 

libFuzzer 

Program Inputs 

AddressSanitizer 
MemorySanitizer 



Finding Bugs in C/C++ 

May	2019	 3	

C/C++	Source	Code	

Code Review/Auditing 

Static Analysis 

Clang Static Analyzer 

Dynamic Analysis Manual Analysis 

american fuzzy lop 

AddressSanitizer 
MemorySanitizer 

Hand-written test suite 

libFuzzer 

Program Inputs 



Dynamic Analysis Tools for C/C++ 

•  More than 35 years of research in Dynamic Analysis Tools – often-called “Sanitizers” 
– that find vulnerabilities specific to C/C++ 
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Exploit Mitigation vs. Sanitization (2/2) 
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Exploit Mitigation Sanitization 

The goal is to … Mitigate attacks Find vulnerabilities 

Used in … Production Pre-release 

Performance budget is … Very limited Much higher 

Policy violation leads to … Program termination Problem diagnosis 

Violations triggered at location of bug Sometimes Always 

Tolerance for FPs is … Zero Somewhat higher 

Surviving benign errors is … Desired Not desired 



Undefined Behavior in C/C++ 

•  Buffer	overflow	
•  Use-after-free	
•  Type	errors	
•  Format	string	bug	
•  Signed	integer	overflow	
•  Null	pointer	dereferences	
•  etc.	
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J.2 Undefined behavior  
The behavior is undefined in the following circumstances: … 
 
— Addition or subtraction of a pointer into, or just beyond, an 

array object and an integer type produces a result that does not 
point into, or just beyond, the same array object (6.5.6).  

… 
 
— An object is referred to outside of its lifetime (6.2.4). 
… 
 
— A pointer is used to call a function whose type is not 

compatible with the referenced type. 
… 
— An object has its stored value accessed other than by an lvalue 

of an allowable type (6.5). 
… 
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J.2 Undefined behavior  
The behavior is undefined in the following circumstances: … 
 
— Addition or subtraction of a pointer into, or just beyond, an 

array object and an integer type produces a result that does not 
point into, or just beyond, the same array object (6.5.6).  
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— A pointer is used to call a function whose type is not 
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→	Well-known	Security	Vulnerabilities	



mov rsi, QWORDPTR[rdi+8]

Security Implications of Undefined Behavior in C/C++ 
(1/2) 
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1. Memory and type safety violations vulnerable to memory exploits 



if (!tun)
  return POLLERR;

 // privileged code	
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sk = tun->sk;
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2. Compilation of a program having UBs may result in vulnerable code 



Low-Level Vulnerabilities in C/C++ (1/2) 
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•  Most of these vulnerabilities can manifest as memory and type safety 
violations. 
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•  Some UBs may lead to unsafe code generation today. 
•  And, things can change as compiler optimizations evolve – called time-

bombs*. 

*  W. Dietz, P. Li, J. Regher, and V. Adve; “Understanding integer overflow in C/C++.” In ICSE, 2012. 
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•  Some UBs may lead to unsafe code generation today. 
•  And, things can change as compiler optimizations evolve – called time-

bombs*. 

*  W. Dietz, P. Li, J. Regher, and V. Adve; “Understanding integer overflow in C/C++.” In ICSE, 2012. 

-fno-delete-null-
pointer-checks

-ftrivial-auto-
var-init=zero

-fno-strict-
aliasing

-fwrapv
-ftrapv



Sanitizer Design and Implementation 
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Sanitizer Design and Implementation: Bug Finding 
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Class of Bugs 

Bug Finding 
Technique 

Bug Finding Techniques 



store ptr*ptr = 3;

May	2019	 20	

Source	code	
(C/C++)	

Intermediate	Representation	
(e.g.,	LLVM	IR)	 Binary	

(a) Language-level (b) IR-level (c) Binary-level 

check(); call check 11101110101
01010101101
01010101011
0101

Inlined Reference Monitor: 
Fine-grained run-time monitoring 
of program behavior to detect 
bugs as they occur. 

Compiler	
Frontend	

Compiler	
Backend	

(d) Library Interposition 
LD_PRELOAD	for instrumenting only 
calls to dynamically-linked external 

library functions 

External 
Libraries

Sanitizer Design and Implementation: Program 
Instrumentation 

Program Instrumentation 

call



(a) Dynamic Metadata (b) Static Metadata 

Others 

Instruction Object Pointer 

Sanitizer Design and Implementation: Metadata 
Management 
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•  Result type of a casting 
operation 

•  Function type used in an 
indirect/variadic call 

•  Embedded 
before, after, 
and within an 
object 

•  Fat pointer 
•  Tagged pointer 

•  Two-level trie 
•  Custom 

•  Direct-mapped 
•  Multi-level 
•  Hash table •  Class hierarchy 

•  Type aliasing information 

Original program 

Sanitizer-instrumented 
program Needs to be created and propagated at run time 

Metadata Management 



Sanitizer Design and Implementation: Precision and 
Overheads 
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Our Analysis of Sanitizers 

•  Our analysis of 37 tools 
•  We benchmarked 10 publicly available 

sanitizers on the same experimental platform 
(
https://github.com/securesystemslab/
sanitizing-for-security-benchmarks) 

•  Main observations 
•  Performance is not a primary concern 
•  Many false positives (marked as      ) in tools 

other than widely-used ones such as ASan 
•  Most of tools only have partial coverage of 

bugs (                ) 
•  Widely deployed tools such as ASan have 

even smaller coverage 
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Precision: False Positives and False Negatives 
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w.r.t. the ISO Standard 
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Well-defined programs 
w.r.t. the ISO Standard 

Programs	conforming	
to	the	ISO	standard	

e.g.,	programs	
creating	OOB	pointers	

Addition or subtraction of a 
pointer into, or just beyond, an 
array object and an integer type 
produces a result that does not 
point into, or just beyond, the 
same array object.*  

*  ISO/IEC JTC1/SC22/WG14. ISO/IEC 9899:2011, Programming Languages — C 



Precision: False Positives and False Negatives 
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*  K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall, R. N. M. Watson, and P. Sewell. Into the Depths of C: Elaborating the De Facto Standards. In PLDI’16 

But in practice it seems to 
be common to transiently 
construct out-of-bounds 
pointers.* 

e.g.,	programs	
creating	OOB	pointers	

Programs	conforming	to	
the	de	facto	standard	
Programs	conforming	
to	the	ISO	standard	

Real-world programs 
(Or De Facto Standard) 
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Reducing Precision Gaps (1/2): Standard 
Compatibility 
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Reducing Precision Gaps (1/2): Standard 
Compatibility 

•  Many programs transiently construct OOB pointers (de facto standards) 
•  Thus, supporting this code idiom increases a tool’s applicability 

•  Many tools, however, do not permit transient construction of OOB pointers 
•  Some bounds checking tools invalidate pointers as soon as they go OOB 
•  Dangling pointer tagging tools may incorrectly invalidate pointers, if OOB pointers are transiently 

stored in memory 

•  Many tools only support ISO standard compatibility by adding one byte between 
objects – this is not enough in practice 
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Reducing Precision Gaps (2/2): Finding Elusive Bugs 
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Programs	disallowed	by	
the	policy	
A	typical	sanitizer	policy	
Programs	conforming	to	
the	de	facto	standard	
Programs	conforming	
to	the	ISO	standard	

Finding bugs that elude existing or widely-deployed sanitizers 



Reducing Precision Gaps (2/2): Finding Elusive Bugs 

•  Subclasses of memory safety violations 
that elude AddressSanitizer: 

•  Intra-object buffer overflow 
•  Buffer overflow into a valid but unintended 

object 
•  Uses of freed memory that are being 

reused 

•  Type errors beyond bad casting 
(static_casts) 

•  C programs or C++ programs using C-style 
casts and reinterpret_casts 

•  Type errors are UBs that may silently break 
programs if does not instruct the compiler 
using flags like -fno-strict-
aliasing
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Reducing Precision Gaps (2/2): Finding Elusive Bugs 

•  Finding these elusive bugs, in general, requires more precise dynamic metadata 
tracking 

•  Tracking per-pointer metadata such as pointer bounds 
•  Tracking effective types of object storage in memory 

•  However, such metadata tracking poses precision and performance challenges 
•  C’s weak type safety (e.g., pointer to integer casts, uses of void pointers) makes 

pointer metadata tracking difficult 
•  The C standard has complex effective type and aliasing rules 

•  More research is needed in developing sanitizers that can find these elusive bugs 
while maintaining good compatibility 
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fatptr=fat(ptr);

Pointer Metadata Tracking Challenges: Uninstrumented 
Code 
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Instrumented Uninstrumented 

Fat pointer is not compatible with 
uninstrumented code 

Disjoint pointer metadata can get outdated, 
when uninstrumented code updates a pointer 

without updating corresponding metadata 

Uninstrumented 

*fatptr

*mem=new_ptr;

check_bnds(ptr);

Instrumented 

ptr=*mem;

*ptr;



Pointer Metadata Tracking Challenges: Pointer to Integer 
Casts 

•  Even with full instrumentation (via, e.g., dynamic binary translation), sanitizers can 
break programs having pointer to integer casts 

•  Incompatible with fat/tagged pointers 

•  Disjoint pointer metadata can be a choice, but full pointer flow tracking across casts 
between pointers and integers can be expensive 

•  Existing tools stop tracking pointer metadata once they are cast to integers 
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some_object_type * → uint64_t



Pointer Metadata Tracking Challenges: Multi-threaded 
Programs 

•  Race-free programs that use atomic operations can be problematic 
•  Concurrent atomic operations from different threads without putting corresponding metadata 

operations into the same atomic unit can make metadata go out-of-sync 

•  Example of naïve instrumentation: 
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atomic_store(addr_of_ptr, ptrA);

atomic_store(addr_of_ptr, ptrB);

*metadata_of_ptr = metadata_of_ptrA;

*metadata_of_ptr = metadata_of_ptrB;

Thread A Thread B

Instrumented code 
metadata for ptr out-of-sync! 

❶ 
❷ 

❸ 

❹ 



Type Error Detection Challenges 

•  Rules about determining an effective type of a stored value (i.e., effective type rules) 
are complex, due to weakly-typed nature of C 

•  Prevalent uses of void pointer type and (omnipotent) character pointer type 
•  malloc returns void * 
•  memcpy-family of functions take and return void * 

•  Type punning through C-style casts and union 

•  There are some tools that implement over-approximations of effective type rules, but 
precision and performance trade-offs are yet to be explored. 

•  Also, type error checking itself can be costly, because C’s aliasing rules permit a 
stored value to be accessed by using pointers of many different types 
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Other Future Research Directions 

Composing sanitizers 
•  Can find bugs closer to their 

source without generating 
duplicated bug reports for the 
bug’s side-effects 

Using hardware features 
to improve performance 
and compatibility 
•  e.g., Pointer tagging/memory 

tagging support in HW 

Kernel and bare metal 
support 
•  Sanitizers for OS kernels, or 

non-user-space programs in 
general 
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Q & A 
 

Thank you! 
 

Dokyung	Song	
Ph.D.	Student	at	UC	Irvine	

dokyungs@uci.edu	
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