Proof-of-Stake Sidechains

Peter Gaži, Aggelos Kiayias, <u>Dionysis Zindros</u>

Motivation

- Imagine a **stake blockchain** where you want both the safety of Bitcoin and the features of Ethereum
- We start with one chain, the "Settlement layer"

- The SL is a safe, limited-feature blockchain
- We want to create a network of blockchains

Motivation

- We introduce the "Computation Layer", a different blockchain
- CL will be a feature-rich smart contract chain

We need to move money between SL/CL

1. move 1 coin from SL to CL

2. move 1 coin around within CL enjoy smart contract functionality

3. move 1 coin from CL back to SL

We need to move money between SL/CL

CL will begin with its own Genesis block when it's ready

Two types of nodes

- Full nodes will come in two flavours:
 - "SL nodes": Only monitor SL blockchain
 - "SCL nodes": Monitor both SL and CL blockchains

Cross-chain transactions [out]

- 1. Money moves around in regular transactions in SL
- 2. A special transaction "destroys" money on the SL
- 3. A follow-up transaction "creates" new (corresponding) money on the CL

Cross-chain transactions [in]

- 1. Money moves around in regular transactions in CL
- 2. A special transaction "destroys" money on CL
- 3. A follow-up transaction "creates" new (corresponding) money on the SL

Direct observation

SCL nodes can see outgoing transactions from SL

Direct observation

SCL nodes can see outgoing transactions from SL

The isolation problem

- SL nodes do not download CL blocks
- How can they learn about CL transactions?
- This is necessary so that SL can unlock the money in SL

Epoch synchronization

We synchronize the epochs between SL / CL

The epoch committee

- Basic idea: Each epoch elects a small CL committee which represents the epoch
- The committee is probabilistic and representative of the stake
 It's more probable you will be in the committee if you have large stake
- How to elect?
 - Sample the last 2k slots of epoch
 - Those 2k slot leaders constitute the committee
- "Honest majority" of stake translates to "honest majority" in the committee
- Committee is temporary -- changes once per epoch

Certificate-based cross-chain communication

- CL epoch committee signs off transactions destroying money in CL
- These signatures are submitted to the SL
- The signature is transmitted across chains once per epoch

Transfer of control

How do the SL nodes verify incoming transactions?

- SL nodes know what the CL committee is for each epoch
- SL nodes know the CL committee at CL Genesis
- In addition to the transactions,
 the old committee signs off the new committee at every epoch
- This passes control from the old committee to the new committee

The firewall property

- If the CL has a catastrophic failure, incoming money is limited to the outgoing amount
- The SL nodes keep count of how much money has left SL
- No more money can come back
- This ensures the macroeconomic properties of SL are maintained even if CL fails

References

- Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka Proofs of Proofs of Work with Sublinear Complexity, FC 2016
- Aggelos Kiayias, Andrew Miller, Dionysis Zindros Non-Interactive Proofs of Proof-of-Work
- Peter Gaži, Aggelos Kiayias, Dionysis Zindros Proof-of-Stake Sidechains, IEEE S&P 2019
- Aggelos Kiayias, Dionysis Zindros Proof-of-Work Sidechains, FC 2019
- Kostis Karantias, Aggelos Kiayias, Dionysis Zindros
 Compact Superblock Storage for NIPoPoW Applications, MARBLE 2019

Thanks! Questions?

Only some rights reserved

Fig. 1: Deployment options for PoS Sidechains.

Definition 8 (Pegging security). A system-of-ledgers protocol Π for $\{\mathbf{L}_i\}_{i\in[n]}$ is pegging-secure with liveness parameter $u\in\mathbb{N}$ with respect to:

- a set of assumptions \mathbb{A}_i for ledgers $\{\mathbf{L}_i\}_{i\in[n]}$,
- $a merge mapping merge(\cdot)$,
- validity languages \mathbb{V}_{A} for each $\mathsf{A} \in \bigcup_{i \in [n]} \mathsf{Assets}(\mathbf{L}_i)$,

if for all PPT adversaries, all slots t and for $S_t \triangleq \{i : A_i[t] \text{ holds}\}$ we have that except with negligible probability in the security parameter:

Ledger persistence: For each $i \in \mathcal{S}_t$, \mathbf{L}_i satisfies the persistence property.

Ledger liveness: For each $i \in \mathcal{S}_t$, \mathbf{L}_i satisfies the liveness property parametrized by u.

Firewall: For all $A \in \bigcup_{i \in S_{+}} Assets(\mathbf{L}_{i})$,

$$\pi_{\mathsf{A}} \left(\mathsf{merge} \left(\left\{ \mathbf{L}_{i}^{\cup}[t] : i \in \mathcal{S}_{t} \right\} \right) \right) \in \pi_{\mathcal{S}_{t}}(\mathbb{V}_{\mathsf{A}}) .$$