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PC on

Software encryption: secret key kept in RAM, which has weaknesses.

(i) Cold boot attack

Reboot, load custom OS, extract key from RAM

(ii) DMA attack

Extract key through DMA interface (PCI-e, Firewire, Thunderbolt, etc.)

Hardware encryption: immune in theory, however
• Key is kept in RAM for virtually all implementations

To support Suspend-to-RAM (S3)

• Key is kept in storage controller (Not secure hardware by any standard)

Many have debugging interfaces exposed on PCB

• Adversary has physical access: can hot-plug the device

Overall: Attack opportunities are more or less equivalent
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• Hardware keylogger
• Backdoor in boot loader

Overall: SEDs don’t offer added protection→ equivalent
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Thus, “encryption” is not even mentioned in the spec

• Two password types: User, Master
• Both are user-settable, initial master password factory set
• MASTER PASSWORD CAPABILITY: High (0), Maximum (1)

· High: both User and Master password unlock drive
· Maximum: Only User unlocks drive, Master may erase

• Bottom line: Always change the Master password or set to Maximum

In practice, even this is almost always insufficient (later)
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Obtain a firmware image

Decompilation of Samsung
Magician tool

(i) Download it (harder than it seems)

· There’s usually obfuscation applied
· Capture SSL traffic, reverse engineer, etc.
· Image may be encrypted,
decryption by the unit itself→ dead end

(ii) Pull the firmware from RAM through JTAG (next)
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Gaining low level control

More or less equal capabilities:

(i) JTAG (allows you to halt the CPU, get/set registers, read/write

in the address space, etc.)

· Somemodels have it in plain sight

· Others need some figuring out

(ii) Obtain unsigned code execution
· Find an undocumented command that

allows this

· Exploit a vulnerability

· Modify code stored onmemory chips

· Bypass cryptographic signatures with fault

injection

ARM14 JTAG

JTAG pins on the Crucial MX100.
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(i) Figure out the section information

· From image header

(ii) Load the image into a disassembler

(We used IDA Pro for this purpose)

(iii) Figure out what the firmware does

· Try to find the ATA dispatch table
· Look through functions with
interesting opcodes

ATA Dispatch table in firmware

ATA specification
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• Models studied released in

2014-2018

• Different form factors

SATA, NVMe, USB

• Most have severe weaknesses
• Best case scenario: security

guarantees are equivalent to

software FDE
• Worst case: confidentiality relies

on an if-statement
• BitLocker delegating trust

amplifies the issue

• TCG Opal is terrible

· Over-engineered

· Security goals not clear

· No reference implementation exists

· Implementation is not even part of

complience tests

· Structural changes needed

Drive 1 2 3 4 5 6 7 8 9 Impact

Crucial MX100

(all)

7 7 7 7 X X Compromised

Crucial MX200

(all)

7 7 7 7 X X Compromised

Crucial MX300

(all)

X X X 7 7 X X Compromised

Sandisk X600

(SATA)

X X X 7 7 X 7 Probably compromised

Samsung 840

EVO (SATA)

7 X X X X X Depends

Samsung 850

EVO (SATA)

7 X X X X X X Depends

Samsung 950

PRO (NVMe)

7 X X X X X X Probably safe

Samsung T3

(USB)

7 X X Compromised

Samsung T5

(USB)

7 X X Compromised

1 Derivation of the DEK from the password in ATA Security (High mode)
2 Derivation of the DEK from the password in ATA Security (Max mode)
3 Derivation of the DEK from the password in TCG Opal
4 Derivation of the DEK from the password in proprietary standard
5 No single key for entire disk
6 Not vulnerable to ATA Master password re-enabling (only if derivation is present)
7 Randomized DEK on sanitize and sufficient random entropy
8 No wear leveling related issues
9 No DEVSLP related issues
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Timeline

Oct 2016 First discovery – Crucial (Mciron) MX100

Oct 2017 – Apr 2018 Attempts made contacting vendors

Apr 2018 Disclosure to Samsung – Meeting in The Hague,

Netherlands

Apr 2018 Disclosure to Micron

Nov 2018 Draft paper published – Vendor responses published

Both vendors release firmware updates

Dec 2018 Presentation at 35C3

Dec 2018 Discovery of Sandisk (Western Digital) models



Timeline (2)

Today:
• CVEs released (CVE-2019-10705, CVE-2019-10706, CVE-2019-10636,

CVE-2019-11686)
• Western Digital releases firmware updates available at

https://www.westerndigital.com/productsecurity
Reviewed by Trail of Bits

• “Western Digital thanks the Radboud researchers, NCSC, and CERT-CC

for participating in the coordinated disclosure process. For more

information on how we work with researchers - including contact

details -, please go to

https://www.westerndigital.com/productsecurity.”



Questions
See the paper ’Self-Encrypting Deception’

Carlo Meijer Bernard van Gastel
c.meijer@cs.ru.nl b.vangastel@cs.ru.nl

https://cs.ru.nl/∼cmeijer/ https://sustailablesoftware.info/

https://midnightbluelabs.com/


