

Neural Networks: Powerful yet
Mysterious

2

MNIST (hand-written digit recognition)

•  Power lies in the
complexity

•  3-layer DNN with 10K
neurons and 25M weights

•  The working mechanism
of DNN is hard to
understand

•  DNNs work as black-
boxes

Photo credit: Denis Dmitriev

How do we test DNNs?
•  We test it using test samples

•  If DNN behaves correctly on test
samples, then we think the model is
correct

•  Recent work try to explain DNN’s
behavior on certain samples

•  E.g. LIME

3

What about untested samples?
•  Interpretability doesn’t solve all the problems

•  Focus on “understanding” DNN’s decision on tested samples
•  ≠ “predict” how DNNs would behave on untested samples

•  Exhaustively testing all possible samples is impossible

4

We cannot control DNNs’ behavior on untested samples

Tested Sasmples

Untested Sasmples

Could DNNs be compromised?
•  Multiple examples of DNNs making disastrous mistakes

•  What if attacker could plant backdoors into DNNs

•  To trigger unexpected behavior the attacker specifies

5

Definition of Backdoor
•  Hidden malicious behavior trained into a DNN

•  DNN behaves normally on clean inputs

6

Adversarial Inputs

Backdoored
DNN

“Speed limit”

“Speed limit”

“Speed limit”

Trigger

Attacker-specified
behavior on any input with

trigger

“Stop”

“Yield”

“Do not enter”

•  BadNets: poison the training set [1]

•  Trojan: automatically design a trigger for more effective attack [2]

•  Design a trigger to maximally fire specific neurons (build a stronger connection)

Prior Work on Injecting Backdoor

7

Trigger:
Target label: “speed limit”

“stop sign”

“do not enter”

“speed limit”

1) Configuration 2) Training w/ poisoned dataset

Modified
samples

Train Infected
Model

[1]: “Badnets: Identifying vulnerabilities in the machine learning model supply chain.” MLSec’17 (co-located w/ NIPS)
[2]: “Trojaning Attack on Neural Networks.” NDSS’18

Learn patterns of both
normal data and the

trigger

Defense Goals and Assumptions
•  Goals

•  Assumptions

8

Has access to
•  A set of correctly labeled samples
•  Computational resources

Does NOT have access to
•  Poisoned samples used by the attacker

Detection

•  Whether a DNN is infected?

•  If so, what is the target label?

•  What is the trigger used?

Mitigation

•  Detect and reject adversarial inputs

•  Patch the DNN to remove the
backdoor

Infected DNN User

Key Intuition of Detecting Backdoor
•  Definition of backdoor: misclassify any sample with trigger into the target

label, regardless of its original label

9

Normal
Dimension

A B C

Minimum ∆ needed to
misclassify all samples into

A

Clean model

Normal
Dimension

A

B C

Minimum ∆ needed
to misclassify all
samples into A

Infected model
Trigger

Dimension Adversarial samples

Intuition: In an infected model, it requires much
smaller modification to cause misclassification into

the target label than into other uninfected labels

Decision
Boundary

Design Overview: Detection

10

Outlier detection
to compare trigger size

1.  If the model is infected?
(if any label has small trigger and appears as
outlier?)

2.  Which label is the target label?
(which label appears as outlier?)

3.  How the backdoor attack works?
(what is the trigger for the target label?)

𝑦↓1 

𝑦↓2 

𝑦↓𝑡 

𝑦↓𝑛 

Reverse-engineered trigger:
Minimum ∆ needed to misclassify

all samples into 𝑦↓𝑖 

Experiment Setup
•  Train 4 BadNets models
•  Use 2 Trojan models shared by prior work
•  Clean models for each task

11

Model Name Input Size # of
Labels

of
Layers

Attack
Success Rate

Classification Accuracy
(change of accuracy)

MNIST 28×28×1 10 4 99.90% 98.54% (↓0.34%)

GTSRB 32×32×3 43 8 97.40% 96.51% (↓0.32%)

YouTube Face 55×47×3 1,283 8 97.20% 97.50% (↓0.64%)

PubFig 224×224×3 65 16 95.69% 95.69% (↓2.62%)

Trojan Square 224×224×3 2,622 16 99.90% 70.80% (↓6.40%)

Trojan
Watermark 224×224×3 2,622 16 97.60% 71.40% (↓5.80%)

BadNets

Trojan

Backdoor Detection Performance (1/3)
•  Q1: If a DNN is infected?

12

0

1

2

3

4

5

6

MNIST GTSRB YouTube
Face

PubFig Trojan
Square

Trojan
Watermark

A
no

m
al

y
In

de
x

Infected Clean Successfully detect
all infected models

Infected

Clean

Backdoor Detection Performance (2/3)
•  Q2: Which label is the target label?

13

Infected

Infected target label always
has the smallest 𝐿↓1  norm

Backdoor Detection Performance (3/3)
•  Q3: What is the trigger used by the backdoor?

14

Injected
Trigger

Reversed
Trigger

MNIST GTSRB YouTube
Face PubFig Trojan

Square
Trojan

Watermark

•  Both triggers fire similar neurons
•  Reversed trigger is more

compact

Badnets: visually similar Trojan: not similar

Brief Summary of Mitigation

•  Detect adversarial inputs
•  Flag inputs with high activation on

malicious neurons
•  With 5% FPR, we achieve <1.63% FNR

on BadNets models (<28.5% on Trojan
models)

•  Patch models via unlearning

•  Train DNN to make correct prediction
when an input has the reversed trigger

•  Reduce attack success rate to <6.70%
with <3.60% drop of accuracy

15

Adversarial
Inputs

Proactive Filter

Infected DNN

Detect and reject
adversarial

inputs

Remove
backdoor

Patch

Robus
t

One More Thing

•  Many other interesting results in the paper

•  More complex patterns?
•  Multiple infected labels?
•  What if a label is infected with not just one backdoor?

•  Code is available on github.com/bolunwang/backdoor

16

