

Neural Networks: Powerful yet Mysterious

MNIST (hand-written digit recognition)

- The working mechanism of DNN is hard to understand
- DNNs work as blackboxes

- Power lies in the complexity
- 3-layer DNN with 10K neurons and 25M weights

How do we test DNNs?

- We test it using test samples
 - If DNN behaves correctly on test samples, then we think the model is correct

• E.g. *LIME*

(a) Husky classified as wolf

(b) Explanation

What about untested samples?

- Interpretability doesn't solve all the problems
 - Focus on "understanding" DNN's decision on tested samples
 - ≠ "predict" how DNNs would behave on untested samples

Exhaustively testing all possible samples is impossible

We cannot control DNNs' behavior on untested samples

Tested Sasmples

Untested Sasmples

Could DNNs be compromised?

- Multiple examples of DNNs making disastrous mistakes
- What if attacker could plant backdoors into DNNs
 - To trigger unexpected behavior the attacker specifies

Definition of Backdoor

- Hidden malicious behavior trained into a DNN
- DNN behaves normally on clean inputs

Attacker-specified

behavior on any input with

Prior Work on Injecting Backdoor

- BadNets: poison the training set ^[1]
 - 1) Configuration 2) Training w/ poisoned dataset "stop sign" Train Infected Modified Trigger: Model "do not enter" samples Target label: "speed limit" ENTER SPEED SPEED DO NOT Learn patterns of both "speed limit" LIMIT LIMIT 65 65 normal data and the trigger
- Trojan: automatically design a trigger for more effective attack ^[2]
 - Design a trigger to maximally fire specific neurons (build a stronger connection)

[1]: "Badnets: Identifying vulnerabilities in the machine learning model supply chain." *MLSec'17* (co-located w/ NIPS)
[2]: "Trojaning Attack on Neural Networks." *NDSS'18*

Defense Goals and Assumptions

• Goals

Detection

- Whether a DNN is infected?
- If so, what is the target label?
- What is the trigger used?

Mitigation

- Detect and reject adversarial inputs
- Patch the DNN to remove the backdoor

• Assumptions

Has access to

- A set of correctly labeled samples
- Computational resources

Does NOT have access to

• Poisoned samples used by the attacker

Key Intuition of Detecting Backdoor

 Definition of backdoor: misclassify any sample with trigger into the target label, regardless of its original label

Design Overview: Detection

Experiment Setup

- Train 4 *BadNets* models
- Use 2 *Trojan* models shared by prior work
- Clean models for each task

	Model Name	Input Size	# of Labels	# of Layers
BadNets –	MNIST	28×28×1	10	4
	GTSRB	32×32×3	43	8
	YouTube Face	55×47×3	1,283	8
	PubFig	224×224×3	65	16
Trojan -	Trojan Square	224×224×3	2,622	16
	Trojan Watermark	224×224×3	2,622	16

Backdoor Detection Performance (1/3)

• Q1: If a DNN is infected?

Backdoor Detection Performance (2/3)

• Q2: Which label is the target label?

Backdoor Detection Performance (3/3)

Brief Summary of Mitigation

- Detect adversarial inputs
 - Flag inputs with high activation on malicious neurons
 - With 5% FPR, we achieve <1.63% FNR on *BadNets* models (<28.5% on *Trojan* models)
- Patch models via unlearning
 - Train DNN to make correct prediction when an input has the reversed trigger
 - Reduce attack success rate to <6.70% with <3.60% drop of accuracy

One More Thing

- Many other interesting results in the paper
 - More complex patterns?
 - Multiple infected labels?
 - What if a label is infected with not just one backdoor?
- Code is available on github.com/bolunwang/backdoor

