


Neural Networks: Powerful yet 
Mysterious 
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MNIST (hand-written digit recognition) 

•  Power lies in the 
complexity 

•  3-layer DNN with 10K 
neurons and 25M weights 

•  The working mechanism 
of DNN is hard to 
understand 

•  DNNs work as black-
boxes 

Photo credit: Denis Dmitriev 



How do we test DNNs? 
•  We test it using test samples 

•  If DNN behaves correctly on test 
samples, then we think the model is 
correct 

•  Recent work try to explain DNN’s 
behavior on certain samples 

•  E.g. LIME 
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What about untested samples? 
•  Interpretability doesn’t solve all the problems 

•  Focus on “understanding” DNN’s decision on tested samples 
•  ≠ “predict” how DNNs would behave on untested samples 

•  Exhaustively testing all possible samples is impossible 

4 

We cannot control DNNs’ behavior on untested samples 

Tested Sasmples

Untested Sasmples



Could DNNs be compromised? 
•  Multiple examples of DNNs making disastrous mistakes 
 
•  What if attacker could plant backdoors into DNNs 

•  To trigger unexpected behavior the attacker specifies 
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Definition of Backdoor 
•  Hidden malicious behavior trained into a DNN 

•  DNN behaves normally on clean inputs 
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Adversarial Inputs 

Backdoored 
DNN 

“Speed limit” 

“Speed limit” 

“Speed limit” 

Trigger 

Attacker-specified 
behavior on any input with 

trigger 

“Stop” 

“Yield” 

“Do not enter” 



•  BadNets: poison the training set [1] 

 
 

•  Trojan: automatically design a trigger for more effective attack [2] 

•  Design a trigger to maximally fire specific neurons (build a stronger connection) 

Prior Work on Injecting Backdoor 
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Trigger: 
Target label: “speed limit” 

“stop sign” 

“do not enter” 

“speed limit” 

1) Configuration 2) Training w/ poisoned dataset 

Modified 
samples 

Train Infected 
Model 

[1]: “Badnets: Identifying vulnerabilities in the machine learning model supply chain.” MLSec’17 (co-located w/ NIPS) 
[2]: “Trojaning Attack on Neural Networks.” NDSS’18 

Learn patterns of both 
normal data and the 

trigger 



Defense Goals and Assumptions 
•  Goals 

•  Assumptions 
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Has access to 
•  A set of correctly labeled samples 
•  Computational resources 
 
Does NOT have access to 
•  Poisoned samples used by the attacker 

Detection 
 

•  Whether a DNN is infected? 

•  If so, what is the target label? 

•  What is the trigger used? 

Mitigation 
 

•  Detect and reject adversarial inputs 

•  Patch the DNN to remove the 
backdoor 

Infected DNN User 



Key Intuition of Detecting Backdoor 
•  Definition of backdoor: misclassify any sample with trigger into the target 

label, regardless of its original label 
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Normal 
Dimension 

A B C 

Minimum ∆ needed to 
misclassify all samples into 

A 

Clean model 

Normal 
Dimension 

A 

B C 

Minimum ∆ needed 
to misclassify all 
samples into A 

Infected model 
Trigger 

Dimension Adversarial samples 

Intuition: In an infected model, it requires much 
smaller modification to cause misclassification into 

the target label than into other uninfected labels 

Decision 
Boundary 



Design Overview: Detection 
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Outlier detection  
to compare trigger size 

1.  If the model is infected?  
(if any label has small trigger and appears as 
outlier?) 

2.  Which label is the target label?  
(which label appears as outlier?) 

3.  How the backdoor attack works?  
(what is the trigger for the target label?) 

𝑦↓1  

𝑦↓2  

𝑦↓𝑡  

𝑦↓𝑛  

Reverse-engineered trigger:  
Minimum ∆ needed to misclassify  

all samples into 𝑦↓𝑖  



Experiment Setup 
•  Train 4 BadNets models  
•  Use 2 Trojan models shared by prior work 
•  Clean models for each task 

11 

Model Name Input Size # of 
Labels 

# of 
Layers 

Attack 
Success Rate 

Classification Accuracy  
(change of accuracy) 

MNIST 28×28×1 10 4 99.90% 98.54% (↓0.34%) 

GTSRB 32×32×3 43 8 97.40% 96.51% (↓0.32%) 

YouTube Face 55×47×3 1,283 8 97.20% 97.50% (↓0.64%) 

PubFig 224×224×3 65 16 95.69% 95.69% (↓2.62%) 

Trojan Square 224×224×3 2,622 16 99.90% 70.80% (↓6.40%) 

Trojan 
Watermark 224×224×3 2,622 16 97.60% 71.40% (↓5.80%) 

BadNets 

Trojan 



Backdoor Detection Performance (1/3) 
•  Q1: If a DNN is infected? 
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Backdoor Detection Performance (2/3) 
•  Q2: Which label is the target label? 
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Infected 

Infected target label always  
has the smallest 𝐿↓1  norm 



Backdoor Detection Performance (3/3) 
•  Q3: What is the trigger used by the backdoor? 
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Injected 
Trigger 

Reversed 
Trigger 

MNIST GTSRB YouTube 
Face PubFig Trojan 

Square 
Trojan 

Watermark 

•  Both triggers fire similar neurons 
•  Reversed trigger is more 

compact 

Badnets: visually similar Trojan: not similar 



Brief Summary of Mitigation 

•  Detect adversarial inputs 
•  Flag inputs with high activation on 

malicious neurons 
•  With 5% FPR, we achieve <1.63% FNR 

on BadNets models (<28.5% on Trojan 
models) 

 
•  Patch models via unlearning 

•  Train DNN to make correct prediction 
when an input has the reversed trigger 

•  Reduce attack success rate to <6.70% 
with <3.60% drop of accuracy 
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Adversarial 
Inputs 

Proactive Filter 

Infected DNN 

Detect and reject 
adversarial 

inputs 

Remove 
backdoor 

Patch 

Robus
t 



One More Thing 

•  Many other interesting results in the paper 

•  More complex patterns? 
•  Multiple infected labels? 
•  What if a label is infected with not just one backdoor? 

•  Code is available on github.com/bolunwang/backdoor 
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