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Finite Field Arithmetic
● Important for elliptic-curve cryptography

– TLS, Signal, SSH...

● Performance-sensitive
● Hand-coded for each modulus, CPU word size

– Widely implemented: P-256 and Curve25519
● Persistent concerns about correctness
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In [OpenSSL multiplication modulo P-256] there are a number of 

comments saying "doesn't overflow". Unfortunately, they aren't correct. 

Got math wrong :-(.  [fix] attached.

[unclear if existing attacks can exploit this]

[still wrong; counterexample]

[...]

Attached. A little bit worse performance on some CPUs

It's good for ~6B random tests. [...] I think we can

safely say that there aren't any low-hanging bugs left.
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Our Library
● Reusable, parametric implementations
● Automatically specialized to parameter values
● One computer-checkable correctness proof
● Deployed to billions of users with BoringSSL
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demo

push-button code generation
(Curve25519 for 32-bit CPUs)
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Generic
(GMP)

Cycles / Curve225519 Operation

Our library Specialized C

Specialized
assembly

121444

152195 154982 ~750000

on a Broadwell laptop, as of time of submission
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Modulus-Specific Representations
● Important driver of specialized implementation
● Break one field element into multiple digits

– mod 2255-19: x = 2256·x4 + 2196·x3 + 2128·x2 +  264·x1 + x0

– mod 2127-1:   x = 2127·x3 + 285·x2 +  243·x1 + x0

● Later: how to use this to speed up modular reduction

43 42 42 bits
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Modulus-Specific Representations
● Important driver of specialized implementation
● Break one field element into multiple digits

– mod 2255-19: x = 2256·x4 + 2196·x3 + 2128·x2 +  264·x1 + x0

– mod 2127-1:   x = 2127·x3 + 285·x2 +  243·x1 + x0

● Key challenge: generalizing algorithms across 
representations

43 42 42 bits
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Our Algorithm-Centric Workflow

Parameter   
Selection  

      Specialization     Micro-  
    optimization  

   cc

Specification

mulmod a b :=
a * b mod m

Template Implementation

Let reduce s c p :=
  let (lo, hi)
    := split s p in
  add lo (mul c hi).

Proof
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                 Focus of This Talk

Parameter   
Selection  

      Specialization     Micro-  
    optimization  

   cc

Specification

mulmod a b :=
a * b mod m

Template Implementation

Let reduce s c p :=
  let (lo, hi)
    := split s p in
  add lo (mul c hi).

Proof
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Compile-time Associational Representation

● 876 = 8·102 + 7·10 + 6·1

● Let example := [(10^2, 8); (10, 7); (1,6)].

● Let eval ls := sum (map (fun ‘(a,x)=> a*x) ls).

● 876 = 4·200 + 5·10 + 1·10 + 16·1
● Later: conversion to standard representation
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Example: Schoolbook Multiplication

a = [(100,3); (10,2); (1,1)]
b =              [(10,7); (1,6)]
               3         2         1     
             18        12        6      6
 21        14          7                7
ab =     [(100, 18); (10, 12); (1, 6);
(1000,21);(100, 14);(10,7)]

 Definition mul (p q : list (Z*Z)) : list (Z*Z) :=

   concat (map (fun ‘(a, x) =>

     map (fun ‘(b, y) =>

       (a*b, x*y))

   q) p).

 Lemma eval_map_mul a x q: eval (map (fun ‘(b, y)=>(a*b, x*y)) q)=a*x*eval q.

 Proof. induction q; push; nsatz. Qed.

 Hint Rewrite eval_map_mul : push.

 Lemma eval_mul : forall p q, eval (mul p q) = eval p * eval q.

 Proof. intros; induction p; cbv [mul]; push; nsatz. Qed.
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But Are These the Implementations 
We’re Looking For?

● Ahead-of-time specialization for performance!
● List lengths, digit weights are compile-time
● Evaluate, partially (grab a coffee while trying this at home):

– cbv -[blacklist] in (mul [(1,x);..] ..)
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Example Arithmetic Code

 Definition mul (p q : list (Z*Z)) : list (Z*Z) :=

   concat (map (fun ‘(a, x) =>

     map (fun ‘(b, y) =>

       (a*b, x*y))

   q) p).

 Lemma eval_map_mul a x q: eval (map (fun ‘(b, y)=>(a*b, x*y)) q)=a*x*eval q.

 Proof. induction q; push; nsatz. Qed.

 Hint Rewrite eval_map_mul : push.

 Lemma eval_mul : forall p q, eval (mul p q) = eval p * eval q.

 Proof. intros; induction p; cbv [mul]; push; nsatz. Qed.

Annotated run-time operation



  
34

Partial Evaluation Example
  Eval cbv -[runtime_mul] in
      fun a0 a1 a2 b0 b1 b2 =>
        mul [(1, a0); (10, a1); (100, a2)]
            [(1, b0); (10, b1); (100, b2)].

= fun a0 a1 a2 b0 b1 b2 =>
     [  (1, a0*b0);   (10, a0*b1);   (100, a0*b2);
       (10, a1*b0);  (100, a1*b1);  (1000, a1*b2);
      (100, a2*b0); (1000, a2*b1); (10000, a2*b2)]

● Almost there; need to deduplicate the output list!

  fun a0 a1 a2 b0 b1 b2 =>
     [(1, a0*b0); (10, a0*b1 + a1*b0); (100, a0*b2+a1*b1+a2*b0); 
           (1000, a1*b2 + a2*b1); (10000, a2*b2)]
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Deduplication to Positional Repr.
● Run-time representation: fixed-length array

→ Assign each term to the correct slot
● With slots for [1, 10, 100], where does (500, x) go?

– Disallow? But proofs
– Useful to handle for mixed-radix representations

● Verdict: to place (500,x), add 5·x to the 100s
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Three Tricks for Modular Reduction
● Pseudo-Mersenne –  m = 2nt - c   (c small)

● Solinas –                    m = 2nt - c   (c sparse)

● Mixed-radix –             m = 2n(t/l) - c 
– Curve25519 on 32-bit, 2004

● One natural implementation will yield all 3!
● Key commonality: weight w s.t. w mod m = c
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Our Modular Multiplication
● Associational representation for inputs and c
● Multiply
● Replace each (2k·b, x) with  mul c [(b, x)]
● Convert to positional with the desired slots

– Some (c·b, x) become (b, c·x)
● Always correct, fast for clever choices of c, k
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  Eval cbv -[runtime_mul runtime_add] in
      (mulmod (n:=10) w (2 ^ 255) [(1, 19)]
         (f9, f8, f7, f6, f5, f4, f3, f2, f1, f0)
         (g9, g8, g7, g6, g5, g4, g3, g2, g1, g0)).
  ring_simplify_subterms.

(* ?fg =
 (f0*g9+ f1*g8+    f2*g7+    f3*g6+    f4*g5+    f5*g4+    f6*g3+    f7*g2+    f8*g1+    f9*g0,
  f0*g8+ 2*f1*g7+  f2*g6+    2*f3*g5+  f4*g4+    2*f5*g3+  f6*g2+    2*f7*g1+  f8*g0+    38*f9*g9,
  f0*g7+ f1*g6+    f2*g5+    f3*g4+    f4*g3+    f5*g2+    f6*g1+    f7*g0+    19*f8*g9+ 19*f9*g8,
  f0*g6+ 2*f1*g5+  f2*g4+    2*f3*g3+  f4*g2+    2*f5*g1+  f6*g0+    38*f7*g9+ 19*f8*g8+ 38*f9*g7,
  f0*g5+ f1*g4+    f2*g3+    f3*g2+    f4*g1+    f5*g0+    19*f6*g9+ 19*f7*g8+ 19*f8*g7+ 19*f9*g6,
  f0*g4+ 2*f1*g3+  f2*g2+    2*f3*g1+  f4*g0+    38*f5*g9+ 19*f6*g8+ 38*f7*g7+ 19*f8*g6+ 38*f9*g5,
  f0*g3+ f1*g2+    f2*g1+    f3*g0+    19*f4*g9+ 19*f5*g8+ 19*f6*g7+ 19*f7*g6+ 19*f8*g5+ 19*f9*g4,
  f0*g2+ 2*f1*g1+  f2*g0+    38*f3*g9+ 19*f4*g8+ 38*f5*g7+ 19*f6*g6+ 38*f7*g5+ 19*f8*g4+ 38*f9*g3,
  f0*g1+ f1*g0+    19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2,
  f0*g0+ 38*f1*g9+ 19*f2*g8+ 38*f3*g7+ 19*f4*g6+ 38*f5*g5+ 19*f6*g4+ 38*f7*g3+ 19*f8*g2+ 38*f9*g1) 
*)

Our Modular Multiplication

(19·251, f8·g9)
= (251, 19·f8·g9)
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  Eval cbv -[runtime_mul runtime_add] in
      (mulmod (n:=10) w (2 ^ 255) [(1, 19)]
         (f9, f8, f7, f6, f5, f4, f3, f2, f1, f0)
         (g9, g8, g7, g6, g5, g4, g3, g2, g1, g0)).
  ring_simplify_subterms.

(* ?fg =
 (f0*g9+ f1*g8+    f2*g7+    f3*g6+    f4*g5+    f5*g4+    f6*g3+    f7*g2+    f8*g1+    f9*g0,
  f0*g8+ 2*f1*g7+  f2*g6+    2*f3*g5+  f4*g4+    2*f5*g3+  f6*g2+    2*f7*g1+  f8*g0+    38*f9*g9,
  f0*g7+ f1*g6+    f2*g5+    f3*g4+    f4*g3+    f5*g2+    f6*g1+    f7*g0+    19*f8*g9+ 19*f9*g8,
  f0*g6+ 2*f1*g5+  f2*g4+    2*f3*g3+  f4*g2+    2*f5*g1+  f6*g0+    38*f7*g9+ 19*f8*g8+ 38*f9*g7,
  f0*g5+ f1*g4+    f2*g3+    f3*g2+    f4*g1+    f5*g0+    19*f6*g9+ 19*f7*g8+ 19*f8*g7+ 19*f9*g6,
  f0*g4+ 2*f1*g3+  f2*g2+    2*f3*g1+  f4*g0+    38*f5*g9+ 19*f6*g8+ 38*f7*g7+ 19*f8*g6+ 38*f9*g5,
  f0*g3+ f1*g2+    f2*g1+    f3*g0+    19*f4*g9+ 19*f5*g8+ 19*f6*g7+ 19*f7*g6+ 19*f8*g5+ 19*f9*g4,
  f0*g2+ 2*f1*g1+  f2*g0+    38*f3*g9+ 19*f4*g8+ 38*f5*g7+ 19*f6*g6+ 38*f7*g5+ 19*f8*g4+ 38*f9*g3,
  f0*g1+ f1*g0+    19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2,
  f0*g0+ 38*f1*g9+ 19*f2*g8+ 38*f3*g7+ 19*f4*g6+ 38*f5*g5+ 19*f6*g4+ 38*f7*g3+ 19*f8*g2+ 38*f9*g1) 
*)

Our Modular Multiplication

(226, f1) · (226, g1)
= (252, f1·g1)
= (251, 2·f1·g2)
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Range Analysis

  0 ≤ f0, f2, f4, f6, f8    ≤  1.25*2^26  (uint32_t)
  0 ≤   f1, f3, f5, f7, f9  ≤  1.25*2^25  (uint32_t)
  0 ≤ g0, g2, g4, g6, g8    ≤  1.25*2^26  (uint32_t)
  0 ≤   g1, g3, g5, g7, g9  ≤  1.25*2^25  (uint32_t)

  f0*g1+ f1*g0+    19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2

 ≤2^52
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Range Analysis

 ≤2^52  ≤2^56 ≤2^52

 ≤2^57
uint64_t
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Range Analysis

 ≤2^59
uint64_t

 ≤2^52  ≤2^56 ≤2^52

 ≤2^57

  0 ≤ f0, f2, f4, f6, f8    ≤  1.25*2^26  (uint32_t)
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  f0*g1+ f1*g0+    19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2
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Range Analysis

Carrying:                              x >> 26              x & ((1<<26)-1)

 ≤2^33  <2^26

  0 ≤ f0, f2, f4, f6, f8    ≤  1.25*2^26  (uint32_t)
  0 ≤   f1, f3, f5, f7, f9  ≤  1.25*2^25  (uint32_t)
  0 ≤ g0, g2, g4, g6, g8    ≤  1.25*2^26  (uint32_t)
  0 ≤   g1, g3, g5, g7, g9  ≤  1.25*2^25  (uint32_t)

  f0*g1+ f1*g0+    19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2

 ≤2^59
uint64_t

 ≤2^52  ≤2^56 ≤2^52

 ≤2^57
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Reflections: Timeline
● Many months: experimentation with other reprs.
● One evening: associational repr, code, proofs
● Many months: engineering Coq partial reduction
● A couple of months: range analysis compiler, proof

● Several days: repr. design for add-with-carry operations
● Several days: figuring out Montgomery reduction proof
● One evening: proving Montgomery red. after refactor
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Reflections: Was It Worth It?
● Relatively easy proofs, no technical surprises
● Many primes with one implementation
● We think our implementations are instructive

● Waiting for Coq to run out of memory (or not) → :(
● Performance is limited by C compiler quality

– Translation validation for human-compiled variants?
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thanks

github.com/mit-plv/fiat-crypto


