

1

Simple High-Level Code For Cryptographic
Arithmetic – With Proofs, Without Compromises

Andres Erbsen, Jade Philipoom, Jason Gross,

Robert Sloan, Adam Chlipala

MIT CSAIL

github.com/mit-plv/fiat-crypto

2

Finite Field Arithmetic
● Important for elliptic-curve cryptography

– TLS, Signal, SSH...

● Performance-sensitive
● Hand-coded for each modulus, CPU word size

– Widely implemented: P-256 and Curve25519
● Persistent concerns about correctness

3

4

In [OpenSSL multiplication modulo P-256] there are a number of

comments saying "doesn't overflow". Unfortunately, they aren't correct.

Got math wrong :-(. [fix] attached.

[unclear if existing attacks can exploit this]

[still wrong; counterexample]

[...]

Attached. A little bit worse performance on some CPUs

It's good for ~6B random tests. [...] I think we can

safely say that there aren't any low-hanging bugs left.

5

In [OpenSSL multiplication modulo P-256] there are a number of

comments saying "doesn't overflow". Unfortunately, they aren't correct.

Got math wrong :-(. [fix] attached.

[unclear if existing attacks can exploit this]

[still wrong; counterexample]

[...]

Attached. A little bit worse performance on some CPUs

It's good for ~6B random tests. [...] I think we can

safely say that there aren't any low-hanging bugs left.

6

In [OpenSSL multiplication modulo P-256] there are a number of

comments saying "doesn't overflow". Unfortunately, they aren't correct.

Got math wrong :-(. [fix] attached.

[unclear if existing attacks can exploit this]

[still wrong; counterexample]

[...]

Attached. A little bit worse performance on some CPUs

It's good for ~6B random tests. [...] I think we can

safely say that there aren't any low-hanging bugs left.

7

In [OpenSSL multiplication modulo P-256] there are a number of

comments saying "doesn't overflow". Unfortunately, they aren't correct.

Got math wrong :-(. [fix] attached.

[unclear if existing attacks can exploit this]

[still wrong; counterexample]

[...]

Attached. A little bit worse performance on some CPUs

It's good for ~6B random tests. [...] I think we can

safely say that there aren't any low-hanging bugs left.

8

In [OpenSSL multiplication modulo P-256] there are a number of

comments saying "doesn't overflow". Unfortunately, they aren't correct.

Got math wrong :-(. [fix] attached.

[unclear if existing attacks can exploit this]

[still wrong; counterexample]

[...]

Attached. A little bit worse performance on some CPUs

It's good for ~6B random tests. [...] I think we can

safely say that there aren't any low-hanging bugs left.

9

Our Library
● Reusable, parametric implementations
● Automatically specialized to parameter values
● One computer-checkable correctness proof
● Deployed to billions of users with BoringSSL

10

Our Library
● Reusable, parametric implementations
● Automatically specialized to parameter values
● One computer-checkable correctness proof
● Deployed to billions of users with BoringSSL

11

demo

push-button code generation
(Curve25519 for 32-bit CPUs)

12

13

14

15

16

17

18

19

20

21

22

23

24

Generic
(GMP)

Cycles / Curve225519 Operation

Our library Specialized C

Specialized
assembly

121444

152195 154982 ~750000

on a Broadwell laptop, as of time of submission

25

Modulus-Specific Representations
● Important driver of specialized implementation
● Break one field element into multiple digits

– mod 2255-19: x = 2256·x4 + 2196·x3 + 2128·x2 + 264·x1 + x0

– mod 2127-1: x = 2127·x3 + 285·x2 + 243·x1 + x0

● Later: how to use this to speed up modular reduction

43 42 42 bits

26

Modulus-Specific Representations
● Important driver of specialized implementation
● Break one field element into multiple digits

– mod 2255-19: x = 2256·x4 + 2196·x3 + 2128·x2 + 264·x1 + x0

– mod 2127-1: x = 2127·x3 + 285·x2 + 243·x1 + x0

● Key challenge: generalizing algorithms across
representations

43 42 42 bits

27

Our Algorithm-Centric Workflow

Parameter
Selection

 Specialization Micro-
 optimization

 cc

Specification

mulmod a b :=
a * b mod m

Template Implementation

Let reduce s c p :=
 let (lo, hi)
 := split s p in
 add lo (mul c hi).

Proof

28

 Focus of This Talk

Parameter
Selection

 Specialization Micro-
 optimization

 cc

Specification

mulmod a b :=
a * b mod m

Template Implementation

Let reduce s c p :=
 let (lo, hi)
 := split s p in
 add lo (mul c hi).

Proof

29

Compile-time Associational Representation

● 876 = 8·102 + 7·10 + 6·1

● Let example := [(10^2, 8); (10, 7); (1,6)].

● Let eval ls := sum (map (fun ‘(a,x)=> a*x) ls).

● 876 = 4·200 + 5·10 + 1·10 + 16·1
● Later: conversion to standard representation

30

Compile-time Associational Representation

● 876 = 8·102 + 7·10 + 6·1

● Let example := [(10^2, 8); (10, 7); (1,6)].

● Let eval ls := sum (map (fun ‘(a,x)=> a*x) ls).

● 876 = 4·200 + 5·10 + 1·10 + 16·1
● Later: conversion to standard representation

31

Example: Schoolbook Multiplication

a = [(100,3); (10,2); (1,1)]
b = [(10,7); (1,6)]
 3 2 1
 18 12 6 6
 21 14 7 7
ab = [(100, 18); (10, 12); (1, 6);
(1000,21);(100, 14);(10,7)]

 Definition mul (p q : list (Z*Z)) : list (Z*Z) :=

 concat (map (fun ‘(a, x) =>

 map (fun ‘(b, y) =>

 (a*b, x*y))

 q) p).

 Lemma eval_map_mul a x q: eval (map (fun ‘(b, y)=>(a*b, x*y)) q)=a*x*eval q.

 Proof. induction q; push; nsatz. Qed.

 Hint Rewrite eval_map_mul : push.

 Lemma eval_mul : forall p q, eval (mul p q) = eval p * eval q.

 Proof. intros; induction p; cbv [mul]; push; nsatz. Qed.

32

But Are These the Implementations
We’re Looking For?

● Ahead-of-time specialization for performance!
● List lengths, digit weights are compile-time
● Evaluate, partially (grab a coffee while trying this at home):

– cbv -[blacklist] in (mul [(1,x);..] ..)

33

Example Arithmetic Code

 Definition mul (p q : list (Z*Z)) : list (Z*Z) :=

 concat (map (fun ‘(a, x) =>

 map (fun ‘(b, y) =>

 (a*b, x*y))

 q) p).

 Lemma eval_map_mul a x q: eval (map (fun ‘(b, y)=>(a*b, x*y)) q)=a*x*eval q.

 Proof. induction q; push; nsatz. Qed.

 Hint Rewrite eval_map_mul : push.

 Lemma eval_mul : forall p q, eval (mul p q) = eval p * eval q.

 Proof. intros; induction p; cbv [mul]; push; nsatz. Qed.

Annotated run-time operation

34

Partial Evaluation Example
 Eval cbv -[runtime_mul] in
 fun a0 a1 a2 b0 b1 b2 =>
 mul [(1, a0); (10, a1); (100, a2)]
 [(1, b0); (10, b1); (100, b2)].

= fun a0 a1 a2 b0 b1 b2 =>
 [(1, a0*b0); (10, a0*b1); (100, a0*b2);
 (10, a1*b0); (100, a1*b1); (1000, a1*b2);
 (100, a2*b0); (1000, a2*b1); (10000, a2*b2)]

● Almost there; need to deduplicate the output list!

 fun a0 a1 a2 b0 b1 b2 =>
 [(1, a0*b0); (10, a0*b1 + a1*b0); (100, a0*b2+a1*b1+a2*b0);
 (1000, a1*b2 + a2*b1); (10000, a2*b2)]

35

Deduplication to Positional Repr.
● Run-time representation: fixed-length array

→ Assign each term to the correct slot
● With slots for [1, 10, 100], where does (500, x) go?

– Disallow? But proofs
– Useful to handle for mixed-radix representations

● Verdict: to place (500,x), add 5·x to the 100s

36

Deduplication to Positional Repr.
● Run-time representation: fixed-length array

→ Assign each term to the correct slot
● With slots for [1, 10, 100], where does (500, x) go?

– Disallow? But proofs
– Useful to handle for mixed-radix representations

● Verdict: to place (500,x), add 5·x to the 100s

37

Deduplication to Positional Repr.
● Run-time representation: fixed-length array

→ Assign each term to the correct slot
● With slots for [1, 10, 100], where does (500, x) go?

– Disallow? But proofs
– Useful to handle for mixed-radix representations

● Verdict: to place (500,x), add 5·x to the 100s

38

Three Tricks for Modular Reduction
● Pseudo-Mersenne – m = 2nt - c (c small)

● Solinas – m = 2nt - c (c sparse)

● Mixed-radix – m = 2n(t/l) - c
– Curve25519 on 32-bit, 2004

● One natural implementation will yield all 3!
● Key commonality: weight w s.t. w mod m = c

39

Three Tricks for Modular Reduction
● Pseudo-Mersenne – m = 2nt - c (c small)

● Solinas – m = 2nt - c (c sparse)

● Mixed-radix – m = 2n(t/l) - c
– Curve25519 on 32-bit, 2004

● One natural implementation will yield all 3!
● Key commonality: weight 2k, 2k mod m = c

40

Our Modular Multiplication
● Associational representation for inputs and c
● Multiply
● Replace each (2k·b, x) with mul c [(b, x)]
● Convert to positional with the desired slots

– Some (c·b, x) become (b, c·x)
● Always correct, fast for clever choices of c, k

41

Our Modular Multiplication
● Associational representation for inputs and c
● Multiply
● Replace each (2k·b, x) with mul c [(b, x)]
● Convert to positional with the desired slots

– Some (c·b, x) become (b, c·x)
● Always correct, fast for clever choices of c, k

42

 Eval cbv -[runtime_mul runtime_add] in
 (mulmod (n:=10) w (2 ^ 255) [(1, 19)]
 (f9, f8, f7, f6, f5, f4, f3, f2, f1, f0)
 (g9, g8, g7, g6, g5, g4, g3, g2, g1, g0)).
 ring_simplify_subterms.

(* ?fg =
 (f0*g9+ f1*g8+ f2*g7+ f3*g6+ f4*g5+ f5*g4+ f6*g3+ f7*g2+ f8*g1+ f9*g0,
 f0*g8+ 2*f1*g7+ f2*g6+ 2*f3*g5+ f4*g4+ 2*f5*g3+ f6*g2+ 2*f7*g1+ f8*g0+ 38*f9*g9,
 f0*g7+ f1*g6+ f2*g5+ f3*g4+ f4*g3+ f5*g2+ f6*g1+ f7*g0+ 19*f8*g9+ 19*f9*g8,
 f0*g6+ 2*f1*g5+ f2*g4+ 2*f3*g3+ f4*g2+ 2*f5*g1+ f6*g0+ 38*f7*g9+ 19*f8*g8+ 38*f9*g7,
 f0*g5+ f1*g4+ f2*g3+ f3*g2+ f4*g1+ f5*g0+ 19*f6*g9+ 19*f7*g8+ 19*f8*g7+ 19*f9*g6,
 f0*g4+ 2*f1*g3+ f2*g2+ 2*f3*g1+ f4*g0+ 38*f5*g9+ 19*f6*g8+ 38*f7*g7+ 19*f8*g6+ 38*f9*g5,
 f0*g3+ f1*g2+ f2*g1+ f3*g0+ 19*f4*g9+ 19*f5*g8+ 19*f6*g7+ 19*f7*g6+ 19*f8*g5+ 19*f9*g4,
 f0*g2+ 2*f1*g1+ f2*g0+ 38*f3*g9+ 19*f4*g8+ 38*f5*g7+ 19*f6*g6+ 38*f7*g5+ 19*f8*g4+ 38*f9*g3,
 f0*g1+ f1*g0+ 19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2,
 f0*g0+ 38*f1*g9+ 19*f2*g8+ 38*f3*g7+ 19*f4*g6+ 38*f5*g5+ 19*f6*g4+ 38*f7*g3+ 19*f8*g2+ 38*f9*g1)
*)

Our Modular Multiplication

(19·251, f8·g9)
= (251, 19·f8·g9)

43

 Eval cbv -[runtime_mul runtime_add] in
 (mulmod (n:=10) w (2 ^ 255) [(1, 19)]
 (f9, f8, f7, f6, f5, f4, f3, f2, f1, f0)
 (g9, g8, g7, g6, g5, g4, g3, g2, g1, g0)).
 ring_simplify_subterms.

(* ?fg =
 (f0*g9+ f1*g8+ f2*g7+ f3*g6+ f4*g5+ f5*g4+ f6*g3+ f7*g2+ f8*g1+ f9*g0,
 f0*g8+ 2*f1*g7+ f2*g6+ 2*f3*g5+ f4*g4+ 2*f5*g3+ f6*g2+ 2*f7*g1+ f8*g0+ 38*f9*g9,
 f0*g7+ f1*g6+ f2*g5+ f3*g4+ f4*g3+ f5*g2+ f6*g1+ f7*g0+ 19*f8*g9+ 19*f9*g8,
 f0*g6+ 2*f1*g5+ f2*g4+ 2*f3*g3+ f4*g2+ 2*f5*g1+ f6*g0+ 38*f7*g9+ 19*f8*g8+ 38*f9*g7,
 f0*g5+ f1*g4+ f2*g3+ f3*g2+ f4*g1+ f5*g0+ 19*f6*g9+ 19*f7*g8+ 19*f8*g7+ 19*f9*g6,
 f0*g4+ 2*f1*g3+ f2*g2+ 2*f3*g1+ f4*g0+ 38*f5*g9+ 19*f6*g8+ 38*f7*g7+ 19*f8*g6+ 38*f9*g5,
 f0*g3+ f1*g2+ f2*g1+ f3*g0+ 19*f4*g9+ 19*f5*g8+ 19*f6*g7+ 19*f7*g6+ 19*f8*g5+ 19*f9*g4,
 f0*g2+ 2*f1*g1+ f2*g0+ 38*f3*g9+ 19*f4*g8+ 38*f5*g7+ 19*f6*g6+ 38*f7*g5+ 19*f8*g4+ 38*f9*g3,
 f0*g1+ f1*g0+ 19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2,
 f0*g0+ 38*f1*g9+ 19*f2*g8+ 38*f3*g7+ 19*f4*g6+ 38*f5*g5+ 19*f6*g4+ 38*f7*g3+ 19*f8*g2+ 38*f9*g1)
*)

Our Modular Multiplication

(226, f1) · (226, g1)
= (252, f1·g1)
= (251, 2·f1·g2)

44

Range Analysis

 0 ≤ f0, f2, f4, f6, f8 ≤ 1.25*2^26 (uint32_t)
 0 ≤ f1, f3, f5, f7, f9 ≤ 1.25*2^25 (uint32_t)
 0 ≤ g0, g2, g4, g6, g8 ≤ 1.25*2^26 (uint32_t)
 0 ≤ g1, g3, g5, g7, g9 ≤ 1.25*2^25 (uint32_t)

 f0*g1+ f1*g0+ 19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2

 ≤2^52

45

Range Analysis

 ≤2^52
uint64_t

 0 ≤ f0, f2, f4, f6, f8 ≤ 1.25*2^26 (uint32_t)
 0 ≤ f1, f3, f5, f7, f9 ≤ 1.25*2^25 (uint32_t)
 0 ≤ g0, g2, g4, g6, g8 ≤ 1.25*2^26 (uint32_t)
 0 ≤ g1, g3, g5, g7, g9 ≤ 1.25*2^25 (uint32_t)

 f0*g1+ f1*g0+ 19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2

46

Range Analysis

 ≤2^52
uint64_t

 ≤2^52 ≤2^52
uint64_t

 0 ≤ f0, f2, f4, f6, f8 ≤ 1.25*2^26 (uint32_t)
 0 ≤ f1, f3, f5, f7, f9 ≤ 1.25*2^25 (uint32_t)
 0 ≤ g0, g2, g4, g6, g8 ≤ 1.25*2^26 (uint32_t)
 0 ≤ g1, g3, g5, g7, g9 ≤ 1.25*2^25 (uint32_t)

 f0*g1+ f1*g0+ 19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2

47

Range Analysis

 ≤2^52
uint64_t

 ≤2^56
uint64_t

 ≤2^52
uint64_t

 0 ≤ f0, f2, f4, f6, f8 ≤ 1.25*2^26 (uint32_t)
 0 ≤ f1, f3, f5, f7, f9 ≤ 1.25*2^25 (uint32_t)
 0 ≤ g0, g2, g4, g6, g8 ≤ 1.25*2^26 (uint32_t)
 0 ≤ g1, g3, g5, g7, g9 ≤ 1.25*2^25 (uint32_t)

 f0*g1+ f1*g0+ 19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2

48

Range Analysis

 ≤2^52 ≤2^56 ≤2^52

 ≤2^57
uint64_t

 0 ≤ f0, f2, f4, f6, f8 ≤ 1.25*2^26 (uint32_t)
 0 ≤ f1, f3, f5, f7, f9 ≤ 1.25*2^25 (uint32_t)
 0 ≤ g0, g2, g4, g6, g8 ≤ 1.25*2^26 (uint32_t)
 0 ≤ g1, g3, g5, g7, g9 ≤ 1.25*2^25 (uint32_t)

 f0*g1+ f1*g0+ 19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2

49

Range Analysis

 ≤2^59
uint64_t

 ≤2^52 ≤2^56 ≤2^52

 ≤2^57

 0 ≤ f0, f2, f4, f6, f8 ≤ 1.25*2^26 (uint32_t)
 0 ≤ f1, f3, f5, f7, f9 ≤ 1.25*2^25 (uint32_t)
 0 ≤ g0, g2, g4, g6, g8 ≤ 1.25*2^26 (uint32_t)
 0 ≤ g1, g3, g5, g7, g9 ≤ 1.25*2^25 (uint32_t)

 f0*g1+ f1*g0+ 19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2

50

Range Analysis

Carrying: x >> 26 x & ((1<<26)-1)

 ≤2^33 <2^26

 0 ≤ f0, f2, f4, f6, f8 ≤ 1.25*2^26 (uint32_t)
 0 ≤ f1, f3, f5, f7, f9 ≤ 1.25*2^25 (uint32_t)
 0 ≤ g0, g2, g4, g6, g8 ≤ 1.25*2^26 (uint32_t)
 0 ≤ g1, g3, g5, g7, g9 ≤ 1.25*2^25 (uint32_t)

 f0*g1+ f1*g0+ 19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2

 ≤2^59
uint64_t

 ≤2^52 ≤2^56 ≤2^52

 ≤2^57

51

Reflections: Timeline
● Many months: experimentation with other reprs.
● One evening: associational repr, code, proofs
● Many months: engineering Coq partial reduction
● A couple of months: range analysis compiler, proof

● Several days: repr. design for add-with-carry operations
● Several days: figuring out Montgomery reduction proof
● One evening: proving Montgomery red. after refactor

52

Reflections: Was It Worth It?
● Relatively easy proofs, no technical surprises
● Many primes with one implementation
● We think our implementations are instructive

● Waiting for Coq to run out of memory (or not) → :(
● Performance is limited by C compiler quality

– Translation validation for human-compiled variants?

53

thanks

github.com/mit-plv/fiat-crypto

