Syncslncsla

Daniel Genkin, University of Michigan

genkin@umich_edu

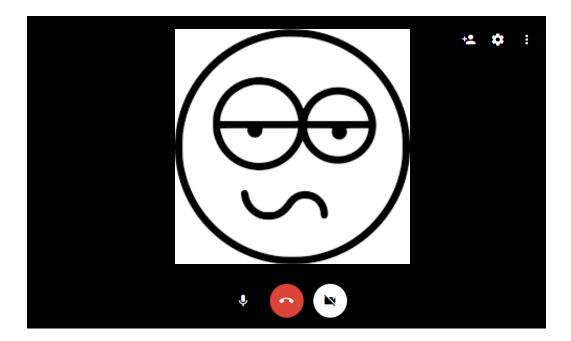
Mihir Pattani, University of Pennsilvania mihirpattani14@gmail.com

Roei Schuster, Tel Aviv University and Cornell Tech rs864@cornell.edu

Eran Tromer, Tel Aviv University and Columbia University tromer@tau.ac.il

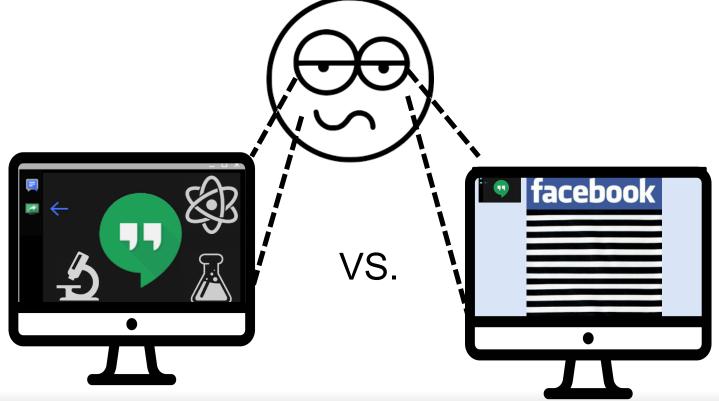
The problem

 Many colleagues appear blandly disengaged during crucial video-conference calls

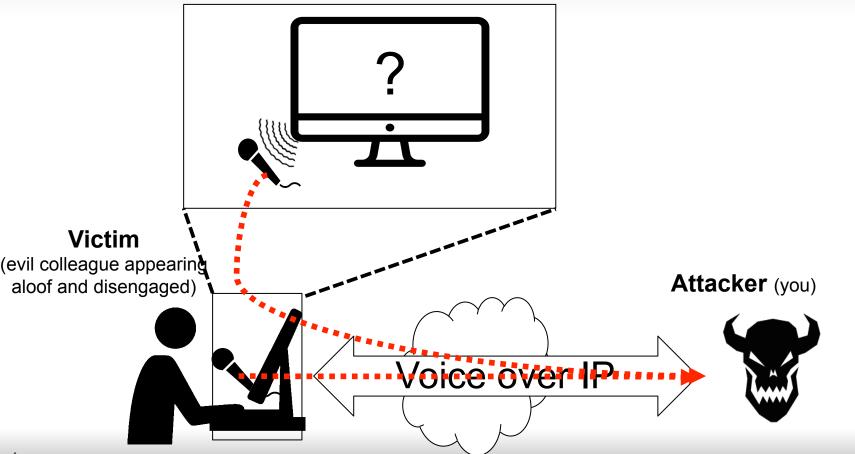


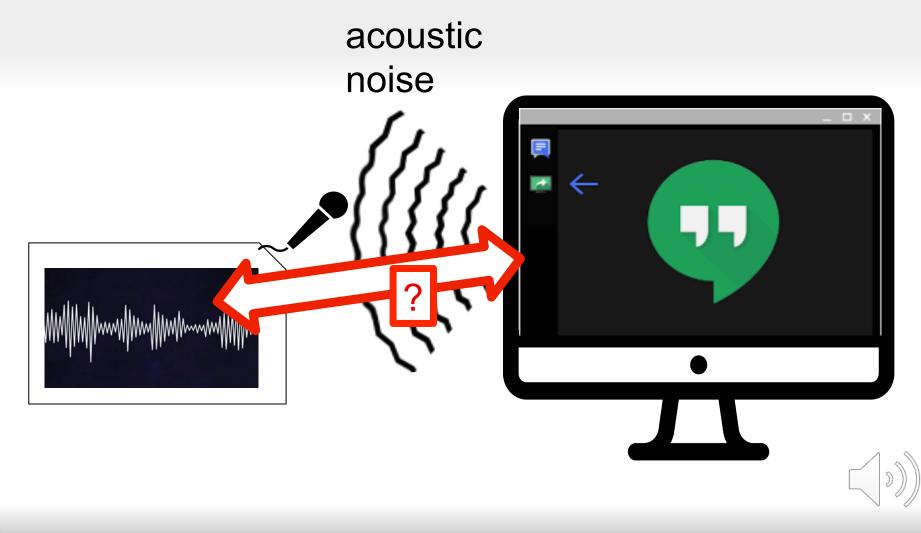
The challenge

• Telling what they are **actually** doing...

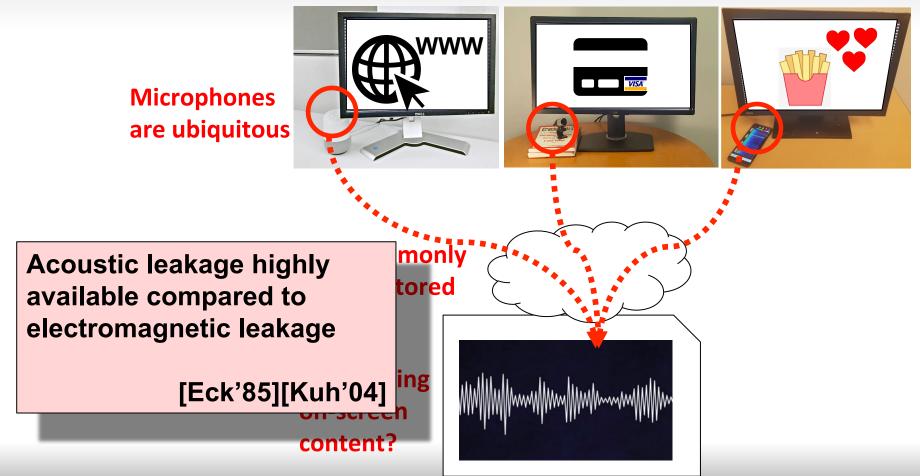


Idea: "hear" the screen



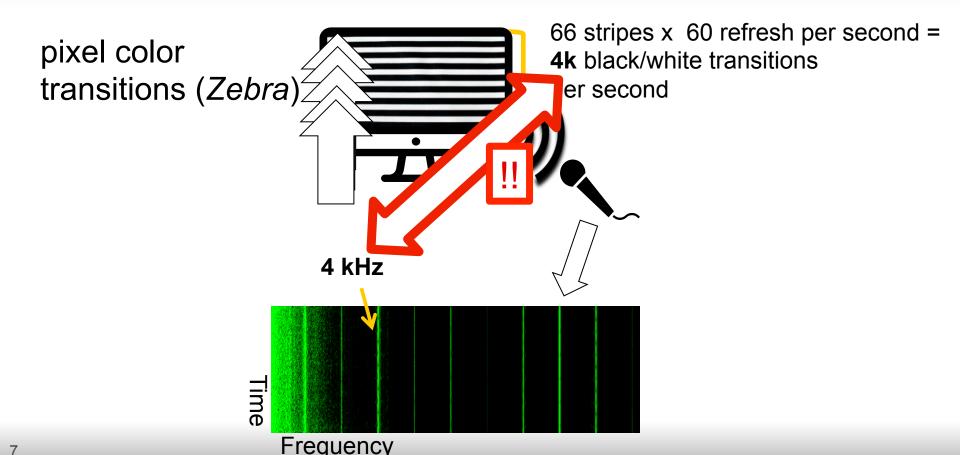


Acoustic leakage from screens is dangerous

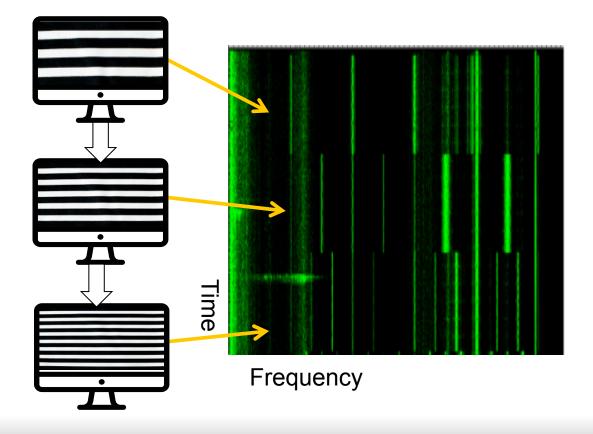


6

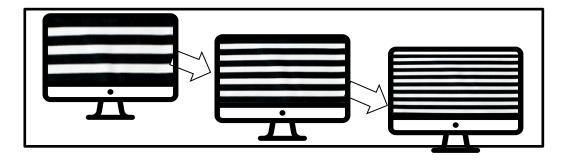
Detecting leakage: "see a Zebra"

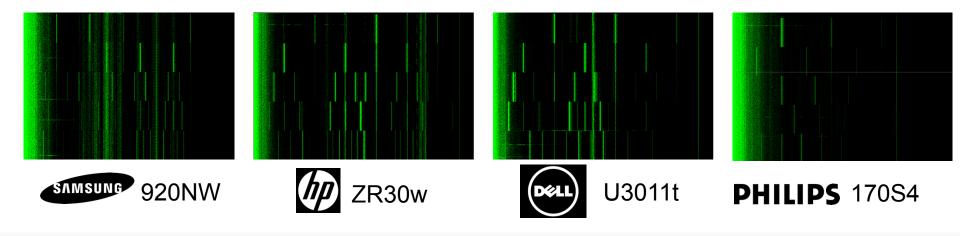


Changing stripe width

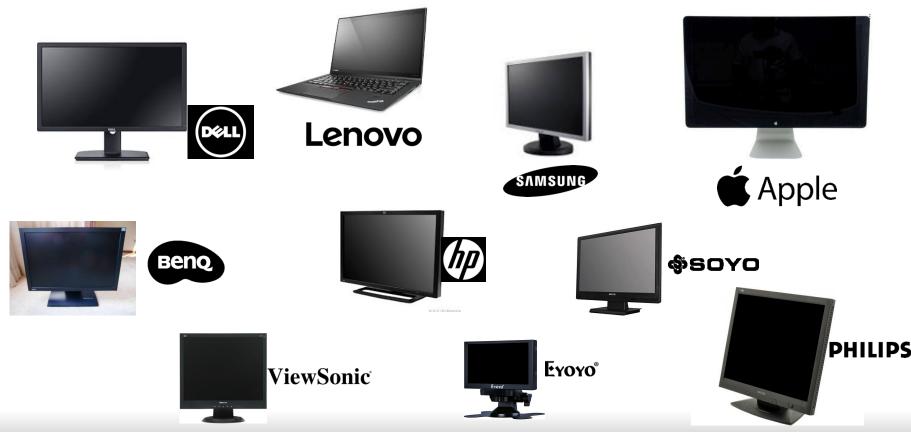


Leakage pattern consistent across makes/models



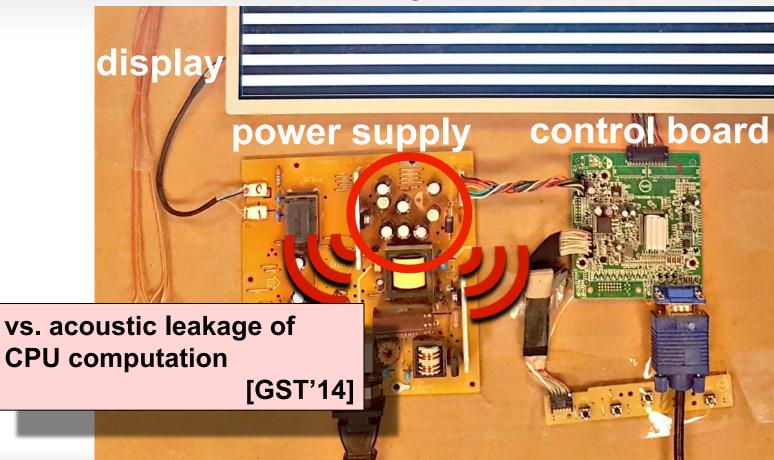


Leakage pattern consistent across many makes/ models

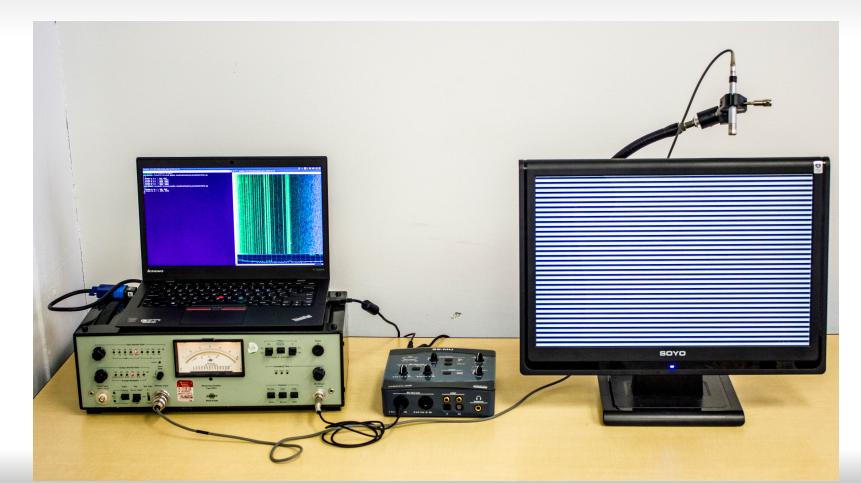


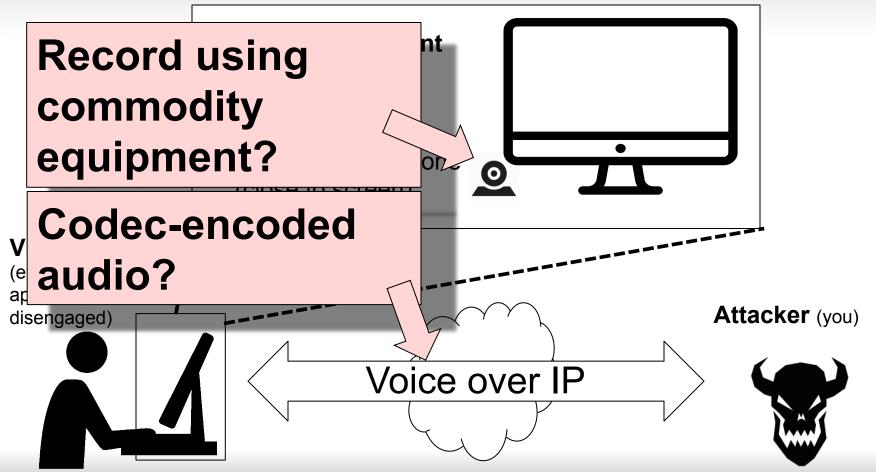
Whence acoustic leakage?

Whence acoustic leakage?

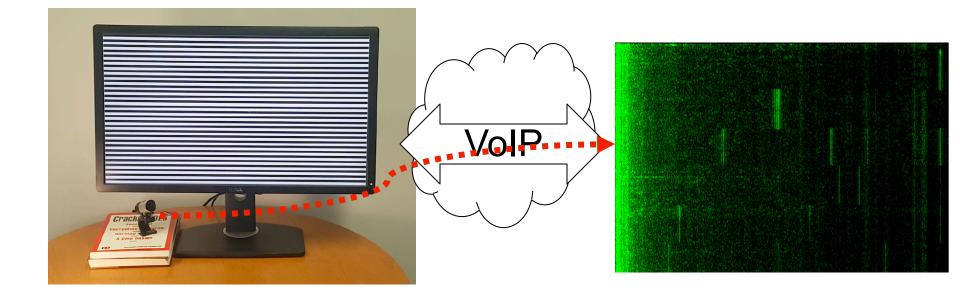


So far: lab conditions

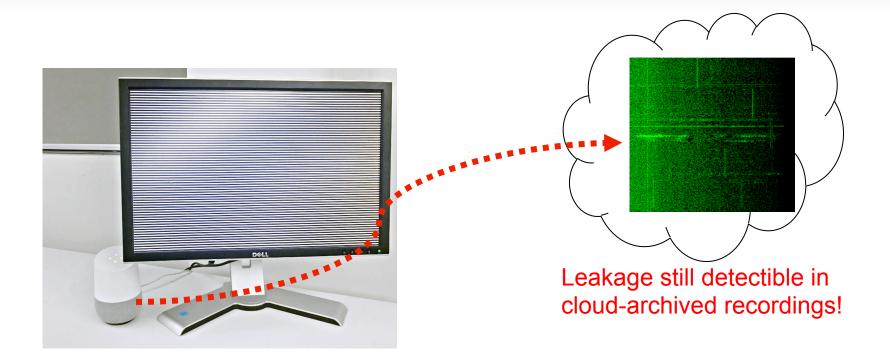




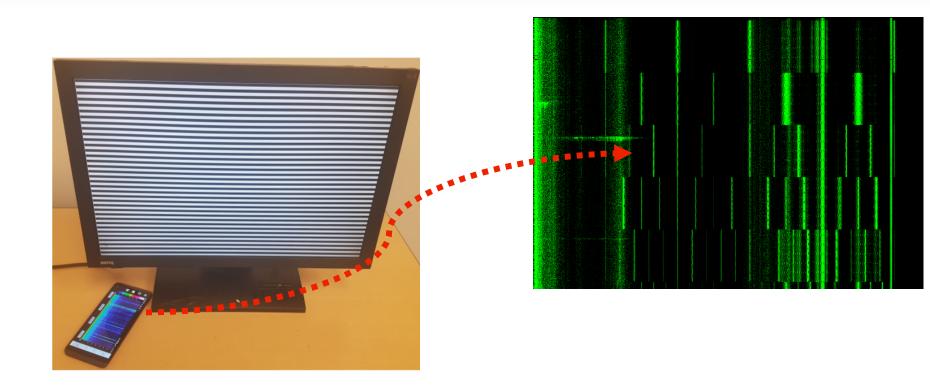
Codec-encoded VoIP (Google Hangouts)



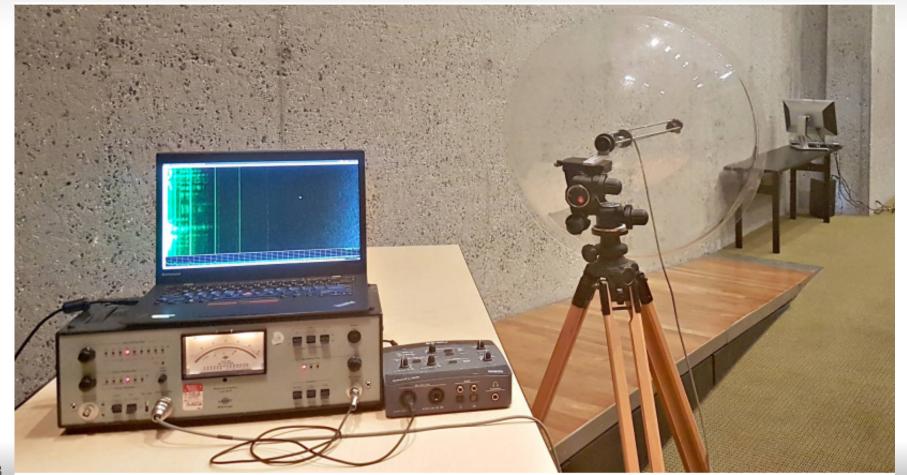
Recordings uploaded to the cloud



Smart phone

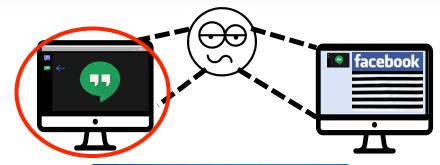


Attack at a distance (using a parabolic dish)



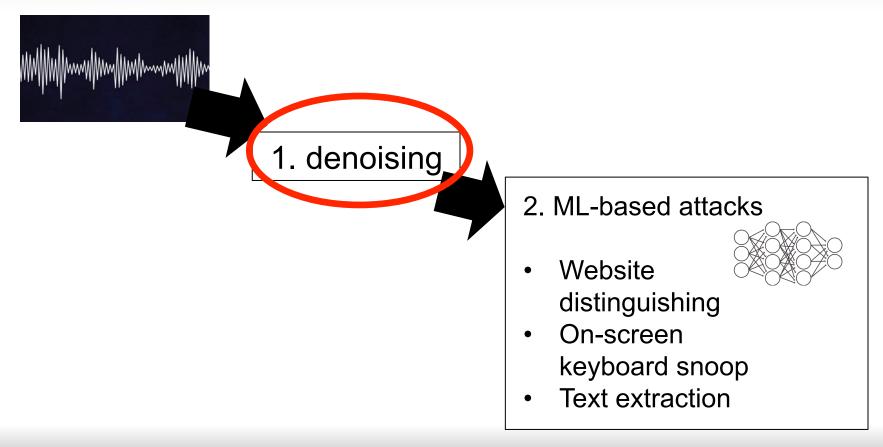
What can an attacker do?

 Activity/website distinguishing

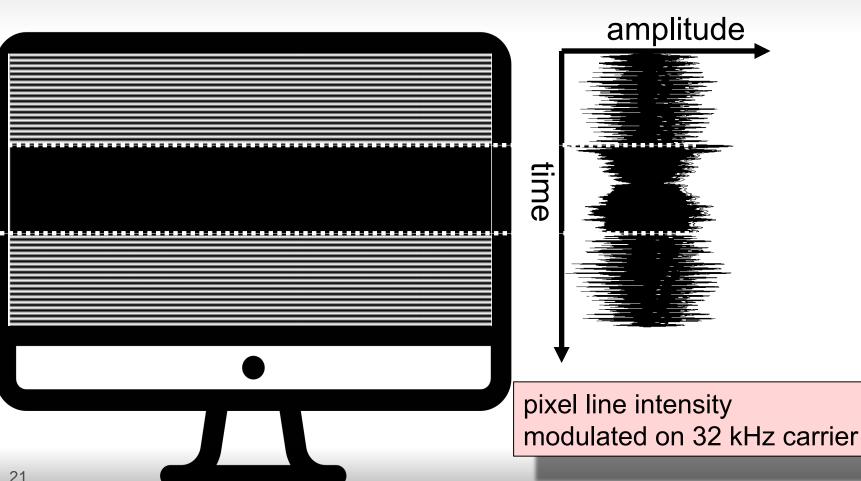


 On-screen keyboard snooping

Text extraction



Observation (1): amplitude modulation

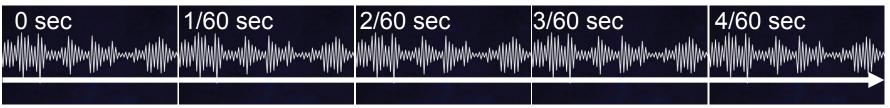


Observation (2): signal redundancy

• Screen refreshes every ~1/60 seconds

→ the signal is extremely redundant!

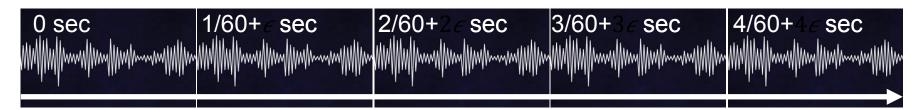
Chop and average?



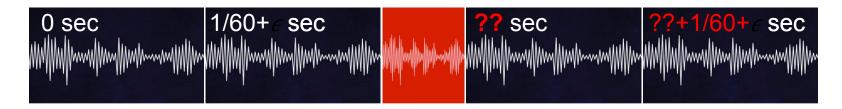
Average: high SNR!

Leveraging redundancy: challenges

• Drift

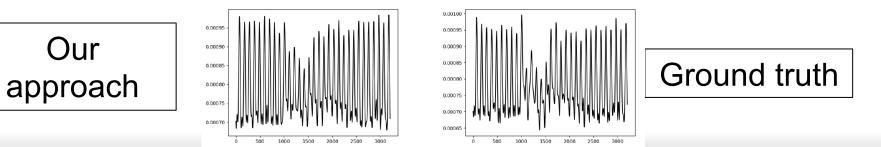


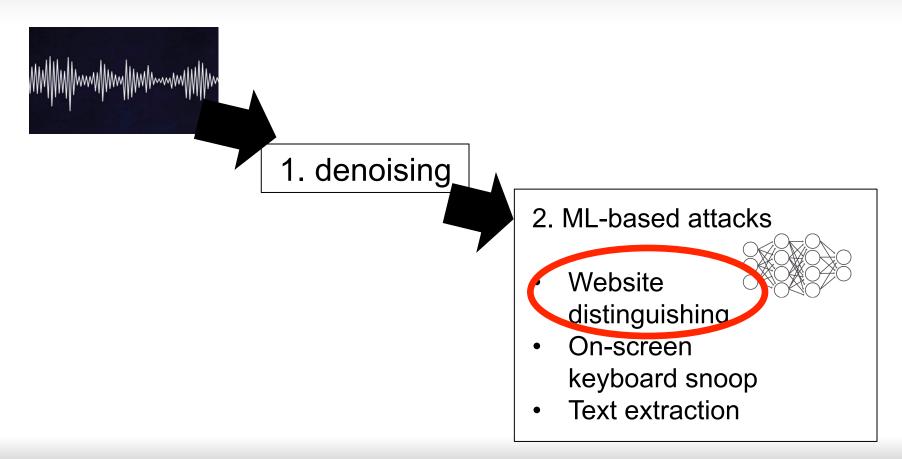
Jitter (+anomalous refresh cycles)



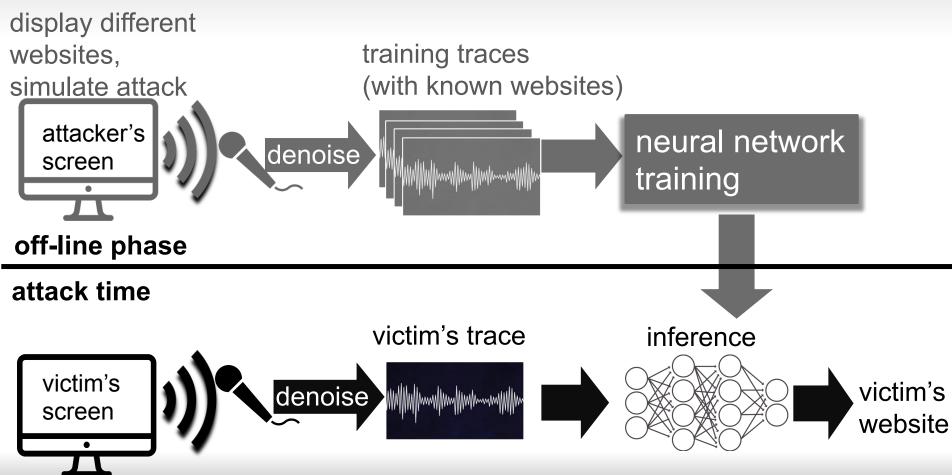
Leveraging redundancy: our approach

- Naïve approaches do not work
- High-level idea:
 - Choose a "master" chop that correlates well with its consecutive one
 - Extract chops chronologically, starting with the master
 - Automatically account for minor drift on-the-fly using a correlation test
 - If correlation becomes very low (indicating jitter encountered), resynchronize with master chop via correlation analysis

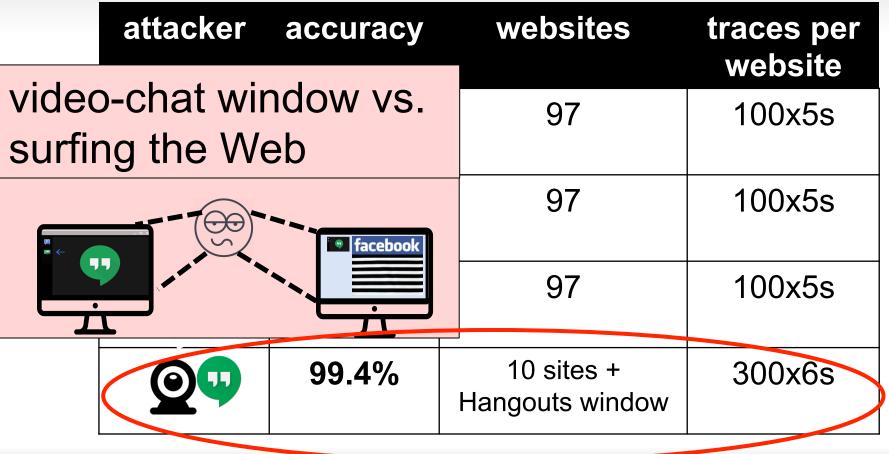


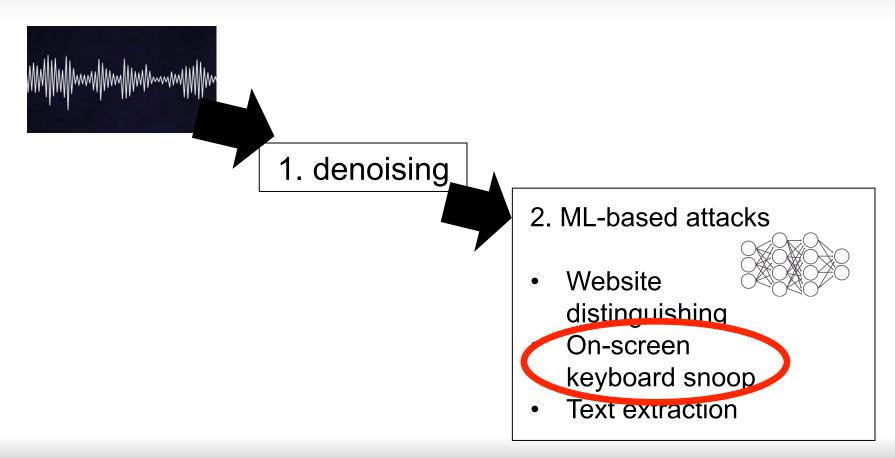


ML-based attacker: website distinguishing



Website distinguishing: results





On-screen keyboards

Considered "safe" against audio-recording attacks on physical keyboards [AA'04, BWY'06, VP'09, HS'12, BCV'08, HS'15, ZZT09, CCLT'17]

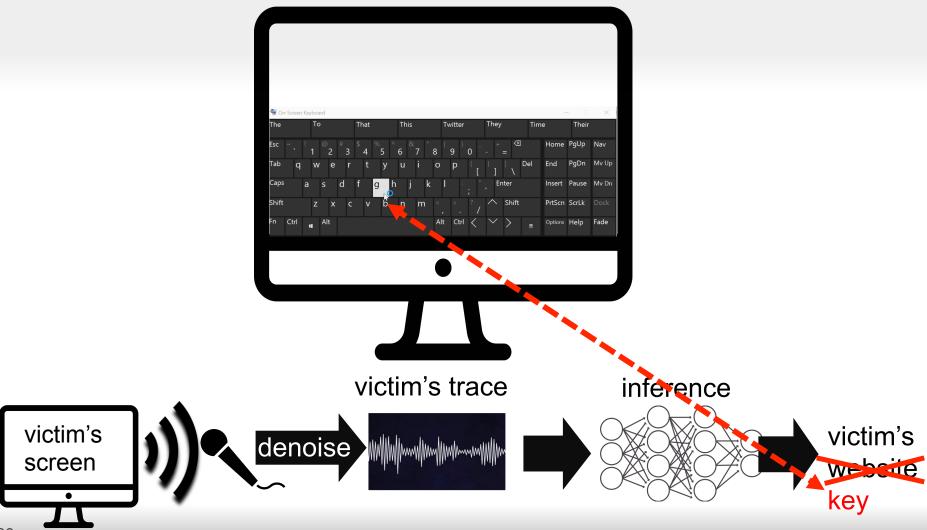
Sometimes required for security, e.g., by online banking websites

Esc	~``	! 1	[@] 2	#	\$ 3	4	5 5	6		8	9	0 -	- +	=		Home	PgUp	Nav
Tab	q	W	e	;	r	t	У	u	i	0	р	{	}]	 _ \	Del	End	PgDn	Mv Up
Caps		а	S	d	f	ç	j ł	n j	k	I		,	. En	ter		Insert	Pause	Mv Dn
Shift		Z	Х	(С	V	b	n	m	< ,		?		Shift		PrtScn	ScrLk	Dock
Fn	Ctrl	-	Alt							Alt	Ctrl	<	\sim	>		Options	Help	Fade

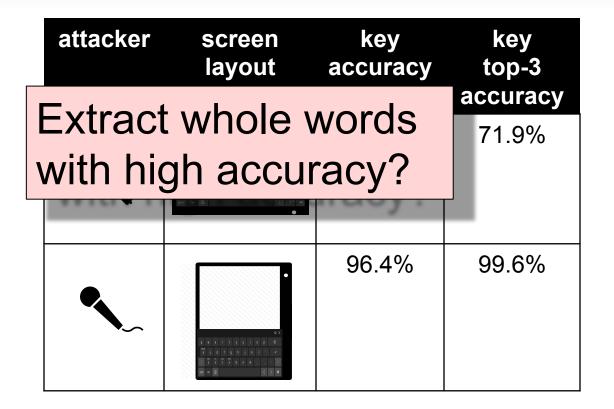
Ne

Jobs

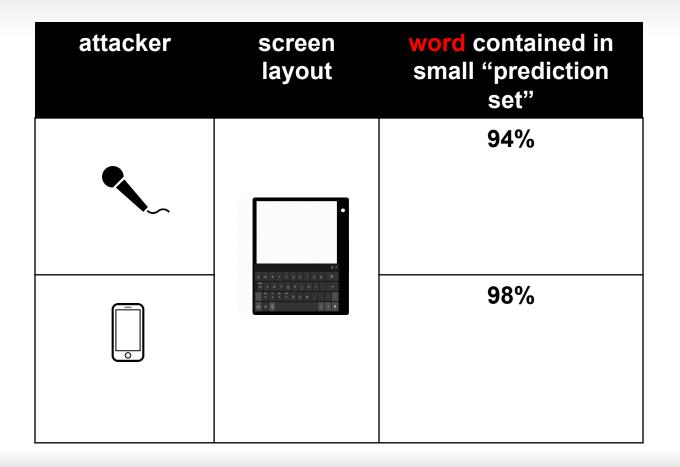
Gma

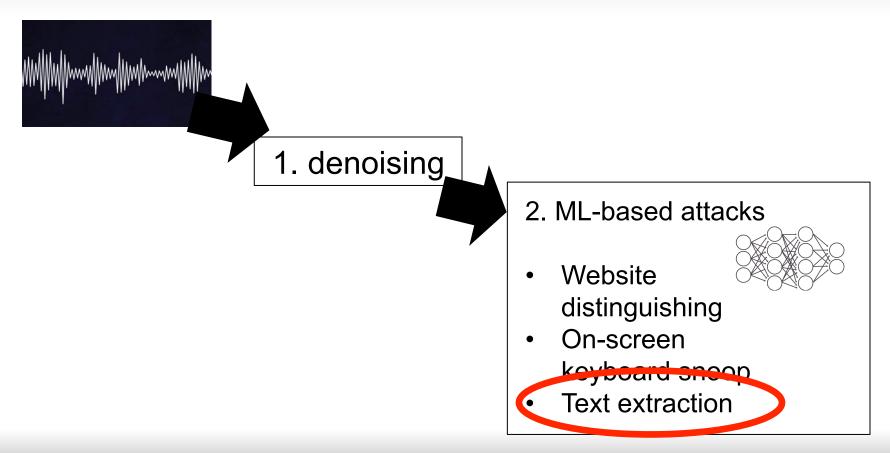


Results: keyboard snooping 1



Results: keyboard snooping 2 (grouping horizontally-aligned keys)



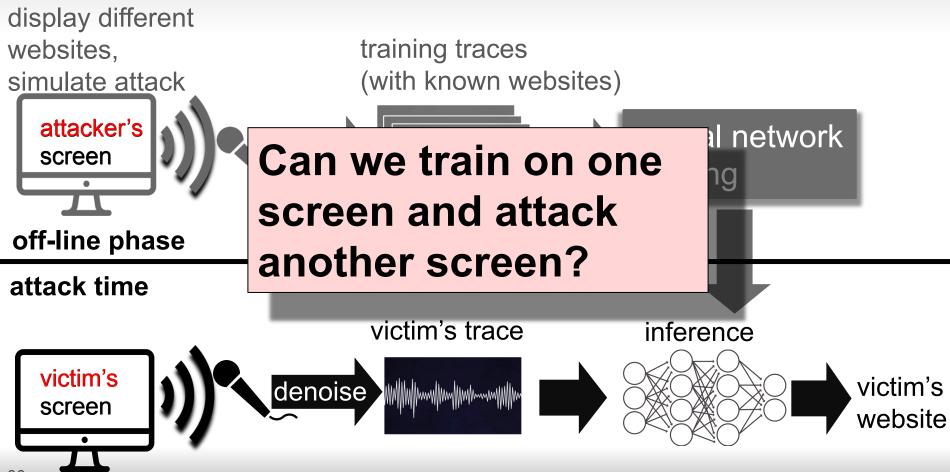


ML-based attacker: text extraction

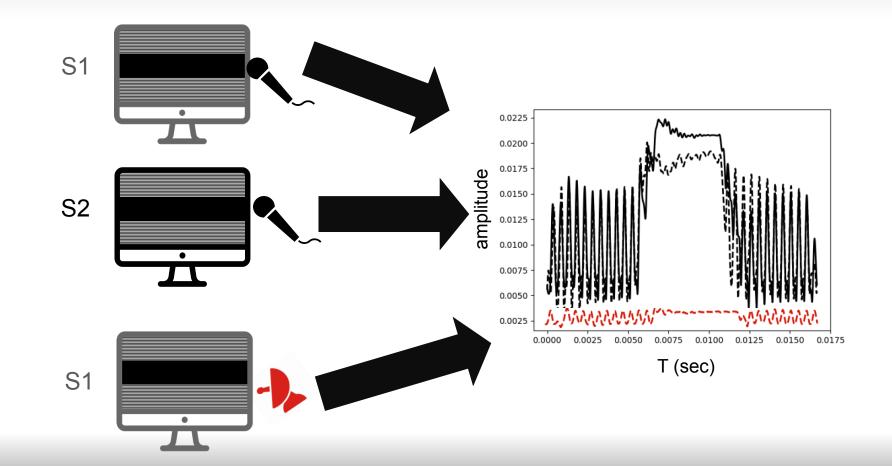
Extracting on-screen text

- Idea:
 - 1. Train separate classifier for each character location
 - → Up to 98% per-character accuracy
 - 2. Error-correction exploiting natural language redundancy
 - →Exact word extracted with probability >1/2
 - Some limitations: large monospace font, known layout...

Cross-screen train-test



Are traces from different screens similar?



Learning from multiple screens

- Challenge: overfitting to training screen
- Idea: learn from multiple screens

Trend: more training screens → higher accuracy

Up to 94% accuracy

Distinguishing between 25 websites, training on up to 10 screens

		Dell4#0	Dell4#1	Dell4#2	Dell4#3	Vic Dell4#4	tim scre Dell5#0	DellB#0	DellB#1	Sovo#0	mean	
	Dell4#0	0.99	0.19	0.67	0.5	0.092	0.14	Dell5#1	0.13	0.24	0.064	0.32
	Dell4#1	0.47	1	0.54	0.48	0.06	0.12	0.41	0.7	0.12	0.048	0.4
	Dell4#2	0.47	0.11	0.97	0.74	0.013	0.05	0.49	0.33	0.076	0.053	0.33
	Dell4#3	0.45	0.19	0.77	1	0.096	0.048	0.61	0.33	0.035	0.033	0.36
	Dell4#4	0.18	0.15	0.021	0.0093	1	0.8	0.01	0.11	0.052	0.097	0.24
	Dell5#0	0.15	0.03	0.054	0.03	0.57	0.98	0.00093	0.082	0.034	0.092	0.2
	Dell5#1	0.21	0.46	0.72	0.6	0.071	0.065	0.98	0.46	0.055	0.027	0.36
l set	DellB#0	0.2	0.48	0.28	0.19	0.086	0.11	0.38	0.99	0.11	0.045	0.29
Train	DellB#1	0.41	0.15	0.15	0.036	0.084	0.097	0.082	0.24	0.99	0.05	0.23
	Soyo#0	0.096	0.071	0.013	0.08	0.16	0.14	0.021	0.038	0.019	1	0.16
	Dell4	0.71	0.35	0.91	0.78	0.09	0.75	0.53	0.74	0.22	0.088	0.52
	Dell5	0.41	0.35	0.68	0.53	0.55	0.0077	0.0019	0.56	0.11	0.087	0.33
	DellB	0.38	0.4	0.48	0.31	0.077	0.24	0.33	0.23	0.033	0.037	0.25
	all	0.71	0.72	0.9	0.8	0.48	0.73	0.62	0.8	0.27	0.098	0.61
	mixed	0.44	0.43	0.83	0.77	0.52	0.24	0.45	0.62	0.17	0.078	0.46
	nosoyo	0.84	0.68	0.94	0.81	0.52	0.7	0.64	0.81	0.22	0.12	0.63

cs.tau.ac.il/~tromer/synesthesia

Synesthesia: Detecting Screen Content via Remote Acoustic Side Channels^{*}

Daniel Genkin University of Michigan genkin@umich.edu Roei Schuster Tel Aviv University, Cornell Tech rs864@cornell.edu

Mihir Pattani University of Pennsylvania mihirsa@seas.upenn.edu

Eran Tromer Tel Aviv University, Columbia University tromer@cs.tau.ac.il

August 21, 2018

Abstract

We show that subtle acoustic noises emanating from within computer screens can be used to detect the content displayed on the screens. This sound can be picked up by ordinary microphones built into webcams or screens, and is inadvertently transmitted to other parties, e.g., during a videoconference call or archived recordings. It can also be recorded by a smartphone or "smart speaker" placed on a desk next to the screen, or from as far as 10 meters away using a parabolic microphone.

Empirically demonstrating various attack scenarios, we show how this channel can

be used for real-time detection of on-screen text, or users' input into on-screen virtual keyboards. We also demonstrate how an attacker can analyze the audio received during video call (e.g., on Google Hangout) to infer whether the other side is browsing the web in lieu of watching the video call, and which web site is displayed on their screen.

Introduction

Mi

are

Physical side-channel attacks extract information from computing

