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Assume no knowledge of system’s internals
How can we measure;
® how much o leaks about s?

® how hard is it to predict s given o?
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Application Examples
Side channels in crypto primitives’ implementation

Crypto Hardware
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Application Examples
Network traffic analysis (e.g., Website Fingerprinting
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Bayes risk

Bayes risk R* is the probability of error of the optimal adversary:
R* = min{Pr (&(o) #s) }
&

On its basis we can compute leakage measures (e.g., Min-entropy,
multiplicative/additive leakage)
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Frequentist paradigm [C+10]

(E.g, leakiEst, LeakWatch)

Suppose adversary observed data:

(5,0.4),(5,0.7), (5,1.2), (5,0.4), (5,0.4)

= Most frequent among {s, s, s}=s

= Random guessing (e.g., most frequent label overall)

e Does not work for continuous output space
e Does not scale to large systems (needs at least one example per output value)
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Nearest Neighbor

With minor modifications NN is leakage estimator (when o from finite set).
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k-Nearest Neighbour [S'77]

If we choose k/n — 0 and k — oo as n — oo, then k-NN is leakage estimator.
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NN-based estimators
Synthetic experiments

e Scale to large systems & excel when there's a metric on the output
¢ \When no metric: equivalent to Frequentist

e However, may converge slowly for maliciously crafted systems
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Quick convergence?
No Free Lunch [W'96]

Is there an “optimal” estimator (i.e., which converges faster than all the others)?

No Free Lunch Theorem No. Uniformly averaged among all the possible systems,
all the estimators are equivalent in terms of convergence.

Always try several estimators and select the one converging faster.

M fbleau based on this idea



TL:DL + future ideas

e Several applications: location privacy, side channels, traffic analysis, ...

e We can use ML (UC) rules: they scale to large problems, and tend to converge
faster (or equivalently to) frequentist approach

+ More applications (e.g., side channels, attacks to ML models)

m fbleau: https://github.com/gchers/fbleau

Black-box security and ML are solving similar problems: let’s bridge them.


https://github.com/gchers/fbleau
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