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A black-box

Assume no knowledge of system’s internals

How can we measure:

• how much o leaks about s?
• how hard is it to predict s given o?
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Application Examples
Location privacy

2



Application Examples
Location privacy

2



Application Examples
Side channels in crypto primitives’ implementation
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Application Examples
Network traffic analysis (e.g., Website Fingerprinting)
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Bayes risk

Bayes risk R∗ is the probability of error of the optimal adversary:

R∗ = min{

Pr
( (

o
)
6= s

)

}

On its basis we can compute leakage measures (e.g., Min-entropy,
multiplicative/additive leakage)
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Black-box estimates

We wish to measure leakage based on queries we make to the system:

(s1, o1), (s2, o2), ..., (sn, on)

6



Black-box estimates

We wish to measure leakage based on queries we make to the system:

(s1, o1), (s2, o2), ..., (sn, on)

6



Frequentist paradigm [C+’10]
(E.g., leakiEst, LeakWatch)

Suppose adversary observed data:

(s, 0.4), (s, 0.7), (s, 1.2), (s, 0.4), (s, 0.4)

Freq(
0.4

)
= Most frequent among {s, s, s}= s

Freq(
0.5

)
= Random guessing (e.g., most frequent label overall)

• Does not work for continuous output space
• Does not scale to large systems (needs at least one example per output value)
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Nearest Neighbor

With minor modifications NN is leakage estimator (when o from finite set).
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k-Nearest Neighbour [S’77]

If we choose k/n→ 0 and k→∞ as n→∞, then k-NN is leakage estimator.
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Universally Consistent rules
Main result

We can use Machine Learning techniques for measuring the leakage.

Definition An ML rule is universally consistent if its error Rn converges to R∗ as
the size of the training data n→∞

E.g., NN (finite case), k-NN, SVM and Neural Networks (some param. choices)
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Results
Location privacy

Defense mechanisms:
• Geometric
• Laplacian
• Blahut-Arimoto

[O+’17]

Gowalla dataset: users’ location data, 100K examples.
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NN-based estimators
Synthetic experiments

• Scale to large systems & excel when there’s a metric on the output

• When no metric: equivalent to Frequentist
• However, may converge slowly for maliciously crafted systems
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Quick convergence?
No Free Lunch [W’96]

Is there an “optimal” estimator (i.e., which converges faster than all the others)?

No Free Lunch Theorem No. Uniformly averaged among all the possible systems,
all the estimators are equivalent in terms of convergence.

Takeaway Always try several estimators and select the one converging faster.

fbleau based on this idea
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TL;DL + future ideas

• Several applications: location privacy, side channels, traffic analysis, ...
• We can use ML (UC) rules: they scale to large problems, and tend to converge

faster (or equivalently to) frequentist approach
+ More applications (e.g., side channels, attacks to ML models)

fbleau: https://github.com/gchers/fbleau

Takeaway Black-box security and ML are solving similar problems: let’s bridge them.
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Spiky channel

2 secrets, 10K observable values
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Results
Geometric distribution

Size of object space: 10K. Size of secret space: 100.
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