AI?: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation

Timon Gehr

I. INTRODUCTION

Adversarial examples can be especially problematic when
safety-critical systems rely on neural networks. For instance,
it has been shown that attacks can be executed physically
(e.g., [5], [12]) and against neural networks accessible only
as a black box (e.g., [7], [18], [20]). To mitigate these issues,
recent research has focused on reasoning about neural network
robustness, and in particular on local robustness. Local robust-
ness (or robustness, for short) requires that all samples in the
neighborhood of a given input are classified with the same
label [15]. Many works have focused on designing defenses
that increase robustness by using modified procedures for
training the network (e.g., [7], [8], [14], [15], [19]). Others
have developed approaches that can show non-robustness by
underapproximating neural network behaviors [1] or methods
that decide robustness of small fully connected feedforward
networks [10]. However, no existing sound analyzer handles
convolutional networks, one of the most popular architectures.

The main challenge facing sound analysis of neural net-
works is scaling to large classifiers while maintaining a
precision that suffices to prove useful properties. The analyzer
must consider all possible outputs of the network over a
prohibitively large set of inputs, processed by a vast number
of intermediate neurons.

To avoid this state space explosion, current methods (e.g.,
[9], [10], [16]) symbolically encode the network as a logical
formula and then check robustness properties with a constraint
solver. However, such solutions do not scale to larger (e.g.,
convolutional) networks, which usually involve many inter-
mediate computations.

II. CONTRIBUTIONS

The key insight of our work is to address this challenge
by leveraging the classic framework of abstract interpreta-
tion (e.g., [2], [3]), a theory which dictates how to obtain
sound, computable, and precise finite approximations of po-
tentially infinite sets of behaviors. Concretely, we leverage
numerical abstract domains — a particularly good match, as
Al systems tend to heavily manipulate numerical quantities.
By showing how to apply abstract interpretation to reason
about Al safety, we enable one to leverage decades of research
and any future advancements in that area (e.g., in numerical
domains [17]). With abstract interpretation, a neural network
computation is overapproximated using an abstract domain.
An abstract domain consists of logical formulas that capture
certain shapes (e.g., zonotopes, a restricted form of polyhedra).

Matthew Mirman Dana Drachsler-Cohen Petar Tsankov Swarat Chaudhuri

Martin Vechev

Based on this insight, we developed a system called AI*
(Abstract Interpretation for Artificial Intelligence). AI? is the
first scalable analyzer that handles common network layer
types, including fully connected and convolutional layers with
rectified linear unit activations (ReLU) and max pooling
layers.

Given a neural network and an input specification, abstract
interpretation computes an abstract output, which is an over-
approximation of all possible concrete outputs. This enables
AT’ to verify safety properties such as robustness directly on
the abstract output.

We evaluated AI’> on important tasks such as verifying
robustness and comparing neural network defenses.

Our main contributions are:

¢ A sound and scalable method for analysis of deep neural
networks based on abstract interpretation.

o AI’, an end-to-end analyzer, extensively evaluated on
feed-forward and convolutional networks (computing
with 53 000 neurons), far exceeding capabilities of current
systems .

o An application of AI” to evaluate provable robustness of
neural network defenses.

III. NEURAL NETWORKS

We give a short introduction to neural networks. This
introduction covers the type of neural network that can be
analyzed by the presented version of the AI? system.

a) Layers: Layers are functions. Neural networks are
often organized as a sequence of layers, such that the neural
network is their composition.

b) Activation Functions: Typically, neural network lay-
ers perform a linear transformation followed by a nonlinear
activation function applied individually to all components of
the input. We focus on the commonly-used ReLU activation:
ReLU(x) = max(z, 0).

c) Fully-connected Layer: A fully-connected layer
FCwy: R™ — R™ is parameterized by a weight matrix
W € R"™™ and a bias vector b € R" and is defined as
FCwp(xz) = ReLU(W -z + D).

d) Convolutional Layer: A convolutional layer
Convyy, Rmxnxr . RMPHL x o g1 x t is
parameterized by weights W € RP*9%"*% and a bias b € R’
A convolutional layer computes ¢ convolutions of the input
with different filters, before it applies the ReLLU activation
function.

e) Max Pooling layer: The max pooling layer
MaxPool, ,: R*™ ™ — RPXm/d partitions the input
into p x q subrectangles and replaces each of them by their
maximum.

IV. ABSTRACT INTERPRETATION

Given a function f: R™ — R", a set of inputs X C R™,
and a property C' C R", the goal of abstract interpretation is
to determine whether the property holds, that is, whether for
any input z in X, the output f(x) is in C.

a) Abstract Interpretation: Abstract interpretation uses
abstract transformers which operate on abstract domains A",
whose elements be represented and processed on a finite
computer. Each element a € A" describes a set y(a) C R" of
possible concrete values. An abstract transformer Tf AT —
A" propagates such a set through a function f: R™ — R".

In the end, the property can be verified directly on the
abstract output. This abstract output may represent a strict
superset of the set of possible concrete outputs.

Accordingly, abstract interpretation is sound, but incom-
plete: A property proved using abstract interpretation holds,
but a particular abstract domain will normally not be able to
prove all true properties.

Our approach can be instantiated with different abstract
domains. For our purposes, an abstract domain has to support
the following operations:

« A bottom element |, representing the empty set.

o Meet (intersect) an abstract element with a conjunction
of linear constraints.

o Join (union) between two abstract elements.

o Apply an affine transformation to an abstract element.

Those operations do not need to be precise, but they need
to be sound: the resulting abstract element must represent a
superset of the set of concrete results obtained when applying
the concrete version of the operation to the sets represented
by the input abstract elements.

V. EXAMPLE ABSTRACT DOMAINS

In this section, we provide an incomplete set of example
abstract domains.

a) Box Domain: Abstract interpretation with the box
domain corresponds to evaluation using interval arithmetic.

b) Zonotope Domain [6]: A zonotope z € Z" is either
L, or it can be represented as a matrix M™*™ for some m €
N, and a center ¢ € R". In this case, it in turn represents
the set v(z) = {M - e+ ¢ | € € [0,1]"}. The zonotope
domain supports an exact affine transformer, while meet and
join necessarily produce a sound approximation, because an
exact result may not be representable as a zonotope.

c) Polyhedra Domain [4]: The polyhedra domain con-
sists of abstract elements that represent a convex polyhedron
and are in turn represented as a set of linear constraints
over the input variables. The polyhedra domain supports an
exact affine transformer as well as an exact meet, while join
produces a convex hull, the best possible sound overapproxi-
mation .

d) Bounded Powerset Domains (e.g. ZonotopeN): The
bounded powerset domain is parameterized with a base do-
main. An element in the bounded powerset domain is a
set from the base domain with bounded size. Such abstract
elements represent the union of the sets represented by their
elements. For example, elemens of Zonotope N consist of N
elements of Zonotope.

VI. ABSTRACT TRANSFORMERS FOR NEURAL NETWORKS

As abstract interpretation is composable, it suffices to define
abstract transformers for each of the types of layers.

a) Fully-connected Layer, Convolutional Layer: ReLU
applied to the i-th component of the abstract element a € A"
can be represented as g;(aM(z; < 0))U(aM(x; > 0)), where
gi: R® — R™ is an affine transformation that assigns 0 to
the ¢-th component of the input. Both the fully-connected and
the convolutional layer are particular affine transformations
followed by componentwise ReLU, therefore we can obtain
abstract transformers for them by composing ReLU abstract
transformers for all components with an affine transformer.

b) Max Pooling Layer: The abstract transformer for the
max pooling layer operates on one subrectangle at a time. For
one such subrectangle, it uses meets with linear constraints
to express a case distinction with one case for each possible
location of the maximal element within the subrectangle. For
each case, it then uses the affine transformer to extract that
particular element. The results from all cases are joined, and
the abstract transformers for all subrectangles are composed
together.

VII. RESULTS

We have experimentally evaluated AI*> on neural networks
for two well-known classification tasks: MNIST [13] and
CIFAR-10 [11].

a) Experiments: We were able to show the following
results:

o AI’ can prove useful robustness properties for convo-
lutional networks with 53000 neurons and large fully
connected feedforward networks with 1800 neurons.

o AI” benefits from more precise abstract domains: Zono-
tope enables AI” to prove substantially more properties
over Box. Further, Zonotope N, with N > 2, can prove
stronger robustness properties than Zonotope alone.

o AI” scales better than the SMT-based Reluplex [10]: AI?
is able to verify robustness properties on large networks
with > 1200 neurons within few minutes, while Reluplex
takes hours to verify the same properties.

b) Defenses: Additionally, we have evaluated state-of-
the art neural network defenses [7], [14], [19]). Those neural
network defenses modify the way that the neural network is
trained, to make it more robust (but without formal guar-
antees). We showed that different defenses produce neural
networks that differ significantly in how amenable they are
to verification using our AI*> system.

[1]

[2]
[3]

[4]

[6]

[7]
[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vy-
tiniotis, Aditya V. Nori, and Antonio Criminisi. Measuring neural net
robustness with constraints. In Proceedings of the 30th International
Conference on Neural Information Processing Systems (NIPS), pages
2621-2629, 2016.

P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal
of Logic and Computation, 2(4):511-547, 1992.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Proceedings of the 4th ACM Symposium on
Principles of Programming Languages (POPL), pages 238-252, 1977.
Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Proceedings of the 5th
ACM Symposium on Principles of Programming Languages (POPL),
pages 84-96, 1978.

Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno,
Bo Li, Atul Prakash, Amir Rahmati, and Dawn Song. Robust physical-
world attacks on machine learning models. CoRR, abs/1707.08945,
2017.

Khalil Ghorbal, Eric Goubault, and Sylvie Putot. The zonotope abstract
domain taylorl+. In Proceedings of the 21st International Conference
on Computer Aided Verification (CAV), pages 627-633, 2009.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. CoRR, abs/1412.6572, 2014.
Shixiang Gu and Luca Rigazio. Towards deep neural network architec-
tures robust to adversarial examples. CoRR, abs/1412.5068, 2014.
Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety
verification of deep neural networks. In Computer Aided Verification,
29th International Conference (CAV), pages 3-29, 2017.

Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J.
Kochenderfer. Reluplex: An efficient SMT solver for verifying deep
neural networks. In Computer Aided Verification, 29th International
Conference (CAV), pages 97-117, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, 2009.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial
examples in the physical world. CoRR, abs/1607.02533, 2016.

Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. In Proceedings of the
IEEE, pages 2278-2324, 1998.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. In International Conference on Learning Repre-
sentations (ICLR), 2018.

Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and
Ananthram Swami. Distillation as a defense to adversarial perturbations
against deep neural networks. In IEEE Symposium on Security and
Privacy (SP), pages 582-597, 2016.

Luca Pulina and Armando Tacchella. An abstraction-refinement ap-
proach to verification of artificial neural networks. In Computer Aided
Verification, 22nd International Conference (CAV), 2010.

Gagandeep Singh, Markus Piischel, and Martin Vechev. Fast polyhedra
abstract domain. In Proceedings of the 44th ACM Symposium on
Principles of Programming Languages (POPL), pages 46-59, 2017.
Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. CoRR, abs/1312.6199, 2013.

Florian Tramer, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and
Patrick McDaniel. Ensemble adversarial training: Attacks and defenses.
arXiv preprint arXiv:1705.07204, 2017.

Florian Tramer, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and
Patrick D. McDaniel. The space of transferable adversarial examples.
CoRR, abs/1704.03453, 2017.

