
POSTER: Grand Pwning Unit: remote
GPU-accelerated microarchitectural attacks
Pietro Frigo

Vrije Universiteit
Amsterdam

p.frigo@vu.nl

Cristiano Giuffrida
Vrije Universiteit

Amsterdam
giuffrida@cs.vu.nl

Herbert Bos
Vrije Universiteit

Amsterdam
herbertb@cs.vu.nl

Kaveh Razavi
Vrije Universiteit

Amsterdam
kaveh@cs.vu.nl

Abstract—Dark silicon is pushing processor vendors to add
more specialized units such as accelerators to commodity pro-
cessor chips. Unfortunately this is done without enough care to
security. In this research we look at the security implications of
integrated Graphics Processing Units (GPUs) found in almost
all mobile processors. We demonstrate that GPUs, already
widely employed to accelerate a variety of benign applications
such as image rendering, can also be used to “accelerate”
microarchitectural attacks (i.e., making them more effective) on
commodity platforms. In particular, we show that an attacker
can build the necessary primitives to deploy effective side-
channel and Rowhammer attacks from JavaScript. We then prove
their efficacy by showing the first end-to-end microarchitectural
compromise of the Firefox browser running on a mobile phone
in under two minutes by orchestrating our GPU primitives.

I. INTRODUCTION

Microarchitectural attacks are increasingly popular for leak-
ing secrets such as cryptographic keys or compromising the
system by triggering Rowhammer bit flips in memory. Recent
work shows that these attacks are even possible through
malicious JavaScript applications, significantly increasing their
real-world impact. To counter this threat, the research commu-
nity has proposed a number of sophisticated defense mech-
anisms. However, these defenses implicitly assume that the
attacker’s capabilities are limited to those of the main CPU
cores.

In this paper, we revisit this assumption and show that it
is insufficient to protect only against attacks that originate
from the CPU. We show, for the first time, that the Graphics
Processing Units (GPUs) that manufacturers have been adding
to most laptops and mobile platforms for years, do not
just accelerate image rendering and a host of other benign
applications, but also boost microarchitectural attacks. Worse,
attackers can unlock the latent power of GPUs even from
JavaScript code running inside the browser paving the way for
a new and more powerful family of remote microarchitectural
attacks. In this paper we show how the GPU, through the
JavaScript WebGL API, provides an attacker with all the
necessary primitives to carry out microarchitectural attacks.
As a proof of this processor’s power we show how we can
combine these primitives to build the first GPU-accelerated
remote Rowhammer attack on ARM that compromises the
Firefox browser in under two minutes without relying on any
software bug.

II. THREAT MODEL

We consider an attacker with access to an integrated GPU.
This can be achieved from JavaScript (and WebGL) when
the user visits a malicious website. To compromise the target
system, we assume the attacker can only rely on microarchi-
tectural attacks by harnessing the primitives provided by the
GPU. We also assume a target system with all defenses up.

Experimental Environment: We run our experiments against
the Adreno 330 GPU. This GPU is embedded on the Qual-
comm Snapdragon 800 and 801 SoCs found on smartphones
such as the LG Nexus 5 or HTC One M8.

III. WEBGL

WebGL is the result of the increasing demand of porting
graphically intensive applications to the Web. This API ex-
poses GPU acceleration to the Web to bolster the develop-
ment of such applications. It is currently supported by every
major browser and allows seamless translation of almost every
OpenGL ES application to the Web.

IV. ATTACKER PRIMITIVES

”Microarchitectural attacks” aim to either (a) steal data us-
ing variety of side channels or (b) corrupt data using hardware
vulnerabilities such as Rowhammer. Here we introduce the
main primitives required to build such attacks and we show
how we manage to obtain them from the GPU.

#P1. Shared resources:
Prerequisite of any microarchitectural attack is having ac-

cess to resources shared with other (distrusting) processes.
Typical resources targeted from microarchitectural attacks are
the CPU caches or system memory. Integrated GPUs need to
share the memory with the other processors on the die. As a
consequence, DRAM represents the perfect target.

The rendering pipeline: The rendering pipeline relies on
developer-provided programs called shaders. The pipeline can
be divided in 4 steps. 1© The CPU provides the GPU with
vertices as inputs. Then 2© the GPU runs the vertex shader on
every vertex constructing polygons from these inputs. These
polygons are composed of different fragments (≈ pixels).
3© Each of these fragments then gets sent to the fragment

shader who fills them with colors usually extracted from
textures (i.e., texture sampling). Finally 4© the outcome gets



Fig. 1: Building blocks of an integrated GPU

exposed to the Framebuffer (≈ screen). Since textures are
stored in system memory, texture sampling represents the best
mean to build our primitive P1 and get access to DRAM.

The GPU architecture: The fundamental units of the GPU are
the Stream Processors (SPs) that are in charge of running the
shaders (Figure 1). Shaders running on the SPs can then query
the texture processors (TPs) to fetch additional input data from
the textures residing in DRAM. Between these processors
and the data stored in DRAM reside two level of caches.
These caches are small and implement a FIFO (deterministic)
replacement policy. This makes it easier to control memory
accesses from the GPU.

#P2. Timers:
To build powerful timing side channels the attacker needs

to be in possession of high-resolution timers. WebGL provides
two main tools to build such timers. 1© Explicit timers can be
recovered from the EXT_DISJOINT_TIMER_QUERY We-
bGL extension. These use the internal GPU clock to measure
execution time. Otherwise, 2© other implicit timers can be
built by using the WebGLSync objects introduced with the
WebGL2 specification for synchronizing CPU and GPU.

Both timers’ families provide sub-µs resolution. In partic-
ular, 1© can reach up to 2ns resolution.

#P3. Knowledge of the physical location:
In order to build efficient Rowhammer attacks we need to

know the physical layout of memory allocations. On ARM
platforms, where huge pages are not available, van der Veen
et al. [2] relied on contiguous DMA allocations. Since this
solution is not available from JavaScript we need to rely on a
timing side channel to gain this primitive. This side-channel
attack builds upon our primitive P2 and it exploits the nature
of DRAM reads.

Every time an application issues a read the requested row
needs to be activated; i.e., moved to the row buffer. The
row buffer contains the currently active row. This means that
accesses to adjacent rows require the data of the active row to
be restored before the new row can be loaded in the row buffer
(i.e., row conflict). This time difference can be measured to
discern if the underlying memory allocation is contiguous.

#P4. Fast memory access:
Rowhammer attacks require fast access to memory to induce

bit flips in other DRAM cells residing on different rows.
JavaScript-based Rowhammer implementations have always
relied on cache eviction to trigger bit flips. However, this
technique has been proven ineffective on ARM due to the slow
eviction process [2]. Unfortunately, the GPU also includes
two level of caches, making it necessary to still rely on this
approach to trigger bit flips. However, opposed to CPU cache
eviction, its GPU counterpart turns out to be successful due
to the small size and FIFO replacement policy of its caches.

We evaluated the mean access time between two accesses
used for hammering. This resulted in ∼180ns, which is lower
than the maximum threshold value reported by van der Veen
et al. (i.e., ∼260ns) [2].

V. EXPLOITING THE GLITCH

To demonstrate the effectiveness of the 4 primitives pre-
sented in Section IV here we present GLitch: our remote end-
to-end exploit that allows an attacker to escape the Firefox
JS sandbox on Android platforms. This exploit is the first
instance of remote Rowhammer exploitation on ARM devices.
Furthermore, it is the first instance of a remote Rowhammer
exploit running in a reasonable time (i.e., less than two minutes
on avarage), bringing microarchitectural attacks always closer
to a plausible threat model. The attack follows the Flip Feng
Shui methodology. It starts with (i) memory templating, which
consists in identifying the exploitable bit flips, then it performs
(ii) memory massaging, which allows to reliably drop sensitive
data on the vulnerable page and finally (iii) exploitation.

The exploit relies on a primitive known as type flipping [1].
This primitive takes advantage of the NaN-boxing technique
which repurposes the 252 − 1 unused NaN values of the
IEEE-754 double specification to encode other data — in this
case pointers. Which means that a carefully triggered bit flip
can turn pointers into doubles and vice versa. This allows
an attacker to gain an arbitrary read/write primitive by first
breaking ASLR with a 1-to-0 bit flip and then crafting a
reference to a fake ArrayBuffer with a 0-to-1 bit flip.

VI. CONCLUSIONS

We showed that it is possible to perform advanced mi-
croarchitectural attacks directly from integrated GPUs found
in almost all mobile devices. These attacks are quite powerful.
For example, we showed for the first time that by relying only
on GPU-accelerated microarchitectural attacks a malicious
user can fully compromise a browser running on a mobile
phone in less than 2 minutes. We hope our efforts make
processor vendors more careful when embedding the next
specialized unit into our commodity processors.

REFERENCES

[1] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est Machina:
Memory Deduplication as an Advanced Exploitation Vector,” in S&P’16.

[2] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms,” in CCS’16.

2


	Introduction
	Threat Model
	WebGL 
	Attacker Primitives
	Exploiting the GLitch
	Conclusions
	References

