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ABSTRACT

Millions of users from all over the world employ anonymous
communication networks, such as Tor [1], to protect their
privacy over the Internet. The design choice made by the
Tor network to keep the latency and bandwidth overheads
small has made it highly attractive to its geographically
diverse user-base. However, over the last decade, the academic
literature [2]–[8] has demonstrated Tor’s vulnerability to a
variety of traffic correlation attacks. In fact, Tor also has been
successfully attacked in practice [9].

It is widely accepted that low-latency low-bandwidth over-
head of anonymous communication (AC) protocols, such as
Tor [10], can only provide a weak form of anonymity [11].
In the anonymity literature, several AC protocols were able
to overcome this security barrier to provide a stronger anony-
mity guarantee (cryptographic indistinguishability-based ano-
nymity [12], [13]) by either increasing the latency overhead or
the bandwidth overhead. In particular, high-latency approaches
(such as threshold mix networks [14]) can ensure strong
anonymity by introducing significant communication delays
for users messages, while high-bandwidth approaches (such as
Dining Cryptographers network [15] and its extensions [16]–
[18]) can provide strong anonymity by adding copious noise
(or dummy) messages.

There have been a few efforts to propose hybrid ap-
proaches [19]–[23] that try to provide anonymity by simultane-
ously introducing latency and bandwidth overhead. However,
it is not clear how to balance such system parameters to ensure
strong anonymity while preserving practical performance.

In general, in the last 35 years a significant amount of
research efforts have been put towards constructing novel
AC protocols, deploying them, and attacking real-world AC
networks. However, unlike other security fields such as cryp-
tography, our understanding regarding the fundamental limits
and requirements of AC protocols remains limited. This work
takes some important steps towards answering fundamental
question associated with anonymous communication. “Can we
prove that strong anonymity cannot be achieved without intro-
ducing large latency or bandwidth overhead? When we wish to
introduce the latency and bandwidth overheads simultaneously,
do we know the overhead range values that still fall short at

providing stronger anonymity?”
In our work, we investigate the fundamental constraints of

anonymous communication (AC) protocols. We analyze the
relationship between bandwidth overhead, latency overhead,
and sender anonymity or recipient anonymity against a global
passive (network-level) adversary. We confirm the trilemma
that an AC protocol can only achieve two out of the following
three properties: strong anonymity (i.e., anonymity up to a
negligible chance), low bandwidth overhead, and low latency
overhead.

We further study anonymity against a stronger global pas-
sive adversary that can additionally passively compromise
some of the AC protocol nodes. For both adversary classes, we
analyze two different user distributions (i.e., distributions that
determine at which time or rate users of the AC protocol send
messages): (i) synchronized user distributions, where users
globally synchronize their messages, and (ii) unsynchronized
user distributions, where each user locally decides when to
send his messages independent of other users.

We derive as a necessary constraint a trade-off between
bandwidth and latency overhead whose violation make it
impossible for an AC protocol to achieve strong anonymity,
i.e., anonymity up to a negligible (in a security parameter η)
chance of failure. For any AC protocol where only a fraction
of β ∈ [0, 1] users send noise messages per communication
round, and where messages can only remain in the network
for ` ≥ 0 communication rounds, we find that against
a global network-level adversary no protocol can achieve
strong anonymity if 2β` < 1 − 1/poly(η) even when all
the protocol parties are honest. In the case where a strictly
stronger adversary additionally passively compromises c (out
of K) protocol parties, we show that strong anonymity is
impossible if 2(` − c)β < 1 − 1/poly(η) (for c < `), or
2β` < 1− 1/poly(η) and ` ∈ O(1) (for c ≥ `).

We also assess the practical impact of our results by
analyzing prominent AC protocols and depicting to which
extent those satisfy our necessary constraints (Table I sum-
marizes bounds on the bandwidth β and latency overhead
`, in the sense of this work). Our constraints mark an area
on a 2D graph (see Figure 1) with latency overhead (x-axis)
versus bandwidth overhead (y-axis) where strong anonymity is
impossible. Our impossibility results naturally only offer nec-
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Fig. 1. Asymptotic latency overhead (`) and bandwidth overhead (β) together
with the “area of impossibility” where 2`β ≤ 1− ε(η). We portray protocols
as dots depending on their choices for ` and β. This graph assumes N is ca.
poly(η), the number of nodes K is ca. log η, for security parameter η. The
threshold for Threshold Mix T = 1 and for Threshold Mixsec T = N =
poly(η). In the graph, both the axes are approximately in logarithmic scale.
(For a more accurate visual representation we refer the readers to [24].)

TABLE I
Latency vs. bandwidth vs. strong anonymity of AC protocols, with the

number of protocol-nodes K, number of clients N, and message-threshold
T , expected latency `′ per node, dummy-message rate β.

Protocol Latency Bandwidth Strong Anonymity
Tor θ(1) θ(1/N) impossible
Hornet θ(1) θ(1/N) impossible
Herd θ(1) θ(N/N) possible
Riposte θ(N) θ(N/N) possible
Vuvuzula θ(K) θ(N/N) possible
Riffle θ(K) θ(N/N) possible
Threshold mix θ(TK) θ(1/N) impossible∗

Loopix θ(
√
K`′) θ(β) possible

DC-Net θ(1) θ(N/N) possible
Dissent-AT θ(1) θ(N/N) possible
DiceMix θ(1) θ(N/N) possible
∗ if T in o(poly(η))

essary constraints for anonymity, but not sufficient conditions
for the AC protocol. However, these necessary constraints for
sender and recipient anonymity are crucial for understanding
bi-directional anonymous communication. In fact, we find
that several AC protocols in the literature are asymptotically
close to the suggested constraints. Moreover, designers of new
AC protocols can use our necessary constraints as guidelines
for avoiding bad combinations of latency and bandwidth-
overhead.
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