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In recent years, differential privacy [8], [9] has been increas-
ingly accepted as the de facto standard for data privacy in the
research community. In the standard (or centralized) setting, a
data curator collects personal data from each individual, and
produces outputs based on the dataset in a way that satisfies
differential privacy. In this setting, the data curator sees the
raw input from all users and is trusted to handle these private
data correctly.

Recently, techniques for avoiding a central trusted authority
have been introduced. They use the concept of Differential
Privacy in the Local setting, which we call LDP. Such
techniques enable collection of statistics of users’ data while
preserving privacy of participants, without relying on trust in
a single data curator. For example, researchers from Google
developed RAPPOR [10], [11] and Prochlo [6], which are
included as part of Chrome. They enable Google to collect
users’ answers to questions such as the default homepage
of their browser, the default search engine, and so on, in
order to understand the unwanted or malicious hijacking of
user settings. Apple [16], [17] also uses similar methods to
help with predictions of spelling and other tasks. Samsung
proposed a similar system [14] which enables collection of
not only categorical answers but also numerical answers
(e.g., time of usage, battery volume), although it is not clear
whether this has been deployed by Samsung. Firefox [1] is
also planning to build a “RAPPOR-like” system that collects
frequent homepages.

We assume that each user possesses an input value v ∈ D,
where D is the value domain. A party wants to learn the
distribution of the input values of all users. We call this party
the aggregator instead of the data curator, because it does
not see the raw data. Existing research [4], [10], [18] has
developed multiple frequency oracle (FO) protocols, using
which an aggregator can estimate the frequency of any chosen
value x ∈ D. In [15], Qin et al. considered the setting where
each user’s value is a set of items v ⊆ I , where I is the
item domain. Such a set-valued setting occurs frequently in
the situation where LDP is applied. For example, when Apple
wants to estimate the frequencies of the emoji’s typed everday
by the users, each user has a set of emoji’s that they typed [17].
The LDPMiner protocol in [15] aims at finding the k most
frequent items and their frequencies.

This problem is challenging because the number of items
each user has is different. To deal with this, a core technique
in [15] is “padding and sampling”. That is, each user first
pads her set of values with dummy items to a fixed size `, then
randomly samples one item from the padded set, and finally
uses an FO protocol to report the item. When estimating the
frequency of an item, one multiples the estimation from the FO
protocol by `. Without padding, the probability that an item
is sampled is difficult to assess, making accurate frequency
estimation difficult.

In [15], the FO protocol is used in a black-box fashion.
That is, in order to satisfy ε-LDP, the FO protocol is invoked
with the same privacy parameter ε. We observe that, since the
sampling step randomly selects an item, it has an amplification
effect in terms of privacy. This effect has been observed and
studied in the standard DP setting [12]. If one applies an
algorithm to a dataset randomly sampled from the input with a
sampling rate of β < 1, to satisfy ε-DP, the algorithm can use
a privacy budget of ε′ > ε; more specifically, the relationship
between ε′, ε, and β is eε

′
−1

eε−1 = 1
β .

Intuitively, one can apply the same observation here. Since
each item is selected with probability β = 1

` , to satisfy
ε-LDP, one can invoke the FO protocol with ε′, such that
eε

′
−1

eε−1 = ` (or, equivalently ε′ = ln (` · (eε − 1) + 1) ≥ ε).
Surprisingly, in our study of padding-and-sampling-based
frequency oracle (PSFO), we found that one cannot always
get this privacy amplification effect. Whether this benefit is
applicable or not depends on the internal structure of the FO
protocol. In [18], the three best performing FO protocols are
Generalized Random Response, Optimized Unary Encoding,
and Optimized Local Hash. The latter two offer the same
accuracy, and Optimized Local Hash has lower communication
cost. It was found that Generalized Random Response offers
the best accuracy when |D| < 3eε + 2, and Optimized
Local Hash offers the best accuracy when |D| ≥ 3eε + 2.
We found that, the privacy amplification effect exists for
Generalized Random Response, but not for Optimized Lo-
cal Hash. Optimized Local Hash is able to provide better
accuracy when |D| is large because each perturbed output
can be used to support multiple input values. However, the
same feature makes Optimized Local Hash unable to benefit



from sampling. The difference in the ability to benefit from
sampling changes the criterion to decide which of Generalized
Random Response and Optimized Local Hash to use. We thus
propose to adaptively select the best FO protocol in PSFO,
based on |I|, ε and the particular ` value. Essentially, when
|I| > (4`2− `) · eε+1, Generalized Random Response should
be used. Replacing the FO protocol used in [15] with such an
adaptively chosen FO protocol greatly improves the accuracy
of the resulting frequent items.

We also observe that the selection of an appropriate `
is crucial, and it can be different depending on the goal.
Essentially, each user pads her itemset to size `, generating
two sources of errors: When ` is small, one would under-
estimate the frequency counts, since items in a set with more
than ` items will be sampled with probability less than 1/`.
On the other hand, since ` is multiplied to a noisy estimate,
increasing ` magnifies the noises. The LDPMiner protocol
in [15] has two phases, the first phase selects 2k candidate
frequent items using a quite large `, and the second phase
computes their frequencies using ` = 2k. We observe that for
the purpose of identifying candidates for the frequent items,
setting ` = 1 is fine. While the resulting frequency counts
under-estimate the true counts, the frequencies of all items
are under-estimated, and it is very unlikely that the true top
k items are not among the 2k candidates. However, when the
goal is to estimate frequency, one needs select a larger `. But
` should not be increased to the point that there is absolutely
no under-estimation, because this increases the magnitude of
noises. Selecting ` is a trade-off between under-estimation and
noise.

Following these insights, we propose Set-Value Item Mining
(SVIM) protocol, which handles set values under the LDP
setting and provides much better accuracy than existing proto-
cols within the same privacy constraints. There are four steps:
First, users use PSFO with a small ` to report; the aggregator
identifies frequent items as candidates, and sends this set to
users. Second, users report (using a standard FO protocol) the
number of candidate items they have; the aggregator estimates
the distribution of how many candidate items the users have
and selects appropriate `, and sends ` to users. Third, users
use PSFO with the given ` to report occurrences of items in
the candidate set; the aggregator estimates the frequency of
these items. Fourth, the aggregator selects the top k frequent
items and use the size distribution in step two to further correct
undercounts. Experimental results how that SVIM significantly
outperforms LDPMiner in that it identifies more frequent items
as well as estimates the frequencies more accurately.

In the setting where each user’s input data is a set of items,
a natural problem is to find frequent itemsets. Frequent itemset
mining (FIM) is a well recognized data-mining problem. The
discovery of frequent itemsets can serve valuable economic
and research purposes, e.g., mining association rules [3],
predicting user behavior [2], and finding correlations [7]. FIM
while satisfying DP in the centralized setting has been studied
extensively, e.g., [5], [19], [13]. However, because of the
challenges of dealing with set-valued inputs in the LDP setting,

no solution for the LDP setting has been proposed. Authors
of [15] consider only the identification of frequent items, and
leave FIM as an open problem. Using the PSFO technique,
we are able to provide the first solution to FIM in the
LDP setting. We call the protocol Set-Value itemSet Mining
(SVSM) protocol; experimental evaluations demonstrates its
effectiveness.
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