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Abstract—We study black-box attacks on deep learning models
where the adversary’s goal is to acquire a batch of adversarial
examples while minimizing the total number of queries. Our
basic hypotheses are that (1) there is high variance on the
number of queries across different seed images and (2) there
exist efficient strategies to identify images which require fewer
queries. Hence, the cost of generating each adversarial example
in a batch attack can be much less than the average attack
cost by focusing resources on the easiest seeds. Our preliminary
results on CNN models for CIFAR-10 dataset show that both
hypotheses hold and that a simple greedy strategy can provide
close to optimal performance, reducing the total cost to find
batch of adversarial examples to less than 1/25th of the cost of
a random search strategy when the attacker can select target
seeds from a large pool of possible seeds.

1. Introduction

Machine learning models are often vulnerable to small
but carefully-crafted adversarial perturbations [1, 4, 7]. An
important branch of research in adversarial machine learning
focuses on attacking machine learning classifiers in black-box
settings, where only query access to the underlying model
is assumed. Black-box attacks can be coarsely categorized
as either transferability-based attacks [6] or query-based
gradient estimation methods [2]. The first category focuses on
training a local model which mimics the decision boundary
of the target model. With a trained local model, the adversary
generates adversarial samples by attacking the local model
and then transfers these samples to the target model. The
second category is identical to existing white-box attack
strategies while the gradient information is numerically
approximated (in contrast to back-propagation in white-box
scenarios). Hence, the former approach needs a one-time
batch of queries to train the local model (and can then
produce new likely-adversarial example in future without
any additional queries). However, the number of queries
needed to produce an adequate local model before finding
the first adversarial example may be large, and transferability-
based method suffer from transfer loss as not all adversarial
examples from the local model successfully transfer to the
target model. In contrast, the latter approach seems to require
a large number of queries for each instance.

We consider an attacker whose goal is to produce a batch
of different adversarial examples with the fewest total queries.
Such an attacker goal is motivated by many potential uses
of adversarial examples including medical image insurance
fraud [3] where each adversarial example found can be
exploited for some value by the attacker, but each query to the
target model poses some risk of detection. A key hypothesis
underlying this work, which we confirm experimentally, is
that there is a large variance in the difficulty of finding
adversarial examples across different seed images. When
this is true, the next question is whether it is possible to
identify easy-to-attack images with low cost, and reduce the
total effort required by focusing an attacker’s resources on
attacking those seeds.

2. Seed Variability

Figure 1 shows the variation in the number of queries
needed to find adversarial examples for different seeds for
CIFAR10 dataset [5]. Each selected image is attacked indi-
vidually in black-box scenario by ZOO attack proposed in [2]
and AutoZoom (https://github.com/chunchentu/AutoZOOM, a
query efficient version of ZOO). We use a standard definition
of adversarial examples: the attacker’s goal is given a seed x,
find an adversarial example x′ such that the model’s output
on x′ is in the target class and the distance between x and
x′ is below some perturbation magnitude limit D (for the
distance measure, we use L2 distance and D = 3 for the
results shown).

The figure shows a high variance for the number of
queries across the seeds, for both ZOO and AutoZoom
method. Median number is less than the average and small
fraction of images contribute significantly to the average
number of queries. Hence, a smart attacker would avoid
querying those hard-to-attack images and devote most of
its resources on the promising images with potentially
lower query numbers. Given the same maximum number
of optimization iterations and perturbation magnitude limit,
ZOO reliably finds adversarial samples for all of the images,
while AutoZoom fails on some fraction of the images (for
images > 320, all number of queries are identical because
maximum query limit of 10,000 is reached and the query
process is stopped).

https://github.com/chunchentu/AutoZOOM
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Figure 1: Distribution of Number of Queries. The images are
sorted by number of queries for each attack, and the plotted values are
normalized by the average number of queries for that attack over the full set
of 500 seeds. For ZOO, the average is 32,590 queries; for AutoZoom, 4,263.
We set coefficient c = 1, which balances the terms in mis-classification and
perturbation magnitude [1, 2]. Maximum number of optimization iterations
is set to 5000 for both ZOO and AutoZoom. For ZOO, one optimization
iteration costs 256 queries to the model while AutoZoom costs 2 queries
per optimization iteration. The results shown are for a targeted attack from
seeds in class 3 (cat) to target class: 8 (ship). Our experiments with other
seed and target classes produced similar results.

3. Batch Attacks

Next, we provide results on identifying the “promising”
easy-to-attack images. We hypothesize that easy-to-attack
images typically have higher target classification probability.
Hence, the simple heuristic solution is to select the images
with highest target class probability. In Figure 2 we compare
this greedy strategy a random search strategy where the
attacker selects images without any consideration to difficult.
We also show the retroactive-optimal cost, for an attacker
with oracle knowledge of the actual number of queries needed
for each sample before starting the attack. The x-axis is the
target number of adversarial samples attacker needs, and the
y-axis gives the average number of queries to find each of
those examples. To get rid of the influence of some extremely
high values, we normalize all the query numbers of ZOO and
AutoZoom by their retroactive optimal values and present
them in log10 scale. (For the random search strategy, we
report the average over 100 executions.)

The results show that when the adversary has access
to many more seeds than the target number of adversarial
examples, the cost of the attack can be greatly reduced, even
using the simple greedy heuristic. For AutoZoom, when
the attacker is interested in attacking 50 images out of 500
images, this simple heuristic strategy can return images which
take only 3.7% of that returned by random search strategy
and average number of queries of the greedy strategy are
only 1.5 times compared to the retroactive-optimal value.
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Figure 2: Performance of Greedy Search Strategy compared
to Random Search and Retroactive Optimal Strategy

4. Conclusion

We study the problem of query efficient batch attacks
to black-box classifiers. We verify that there exists high
variance in the number of queries across different images
and also propose a simple heuristic image search strategy
based on target class probability. Experiments demonstrated
the effectiveness of the greedy strategy in finding subset
of images with fewest number of queries. At some level,
these results are unsurprising—it is easier to find adversarial
examples when the starting seed it closer to the target than
when it is further away. This suggest that perhaps more
consideration is needed about how adversaries will actually
exploit the adversarial examples they find and how we should
evaluate attacks and defenses.
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