
Poster: The Secure Socket API
Mark O’Neill

Computer Science
Brigham Young University

Provo, USA
mto@byu.edu

Scott Heidbrink
Computer Science

Brigham Young University
Provo, USA

sheidbri@byu.edu

Kent Seamons
Computer Science

Brigham Young University
Provo, USA

seamons@cs.byu.edu

Daniel Zappala
Computer Science

Brigham Young University
Provo, USA

zappala@cs.byu.edu

I. INTRODUCTION

Transport Layer Security is the protocol most-responsible
for encryption on the Internet today. Unfortunately, popular
TLS security libraries, such as OpenSSL and GnuTLS, while
feature-rich and widely-used, have long been plagued by
programmer misuse, leading to security flaws. The complexity
and design of these libraries can make them hard to use
correctly for application developers and even security experts.

In this work we present the Secure Socket API (SSA), a
TLS API designed to work within the confines of the existing
standard POSIX socket API already familiar to network pro-
grammers. We extend the POSIX socket API in a natural way,
providing backwards compatibility with the existing POSIX
socket interface. The SSA enables developers to quickly build
TLS support into their applications and administrators to easily
control how applications use TLS on their machines. This
reduces application code by thousands of lines, and reduces
security APIs from over 500 functions to a mere dozen.
We demonstrate our prototype SSA implementation across a
variety of use cases and also show how it can be trivially
integrated into existing programming languages.

II. MOTIVATION

TLS use by applications is mired by complicated APIs and
developer mistakes, a problem that has been well-documented.
The libssl component of the OpenSSL library alone exports
504 functions and macros for use by TLS-implementing
applications. This and other TLS APIs have been criticized for
their complexity [3], [4] and, anecdotally, our own explorations
find many functions within libssl that have non-intuitive
semantics, confusing names, or little-to-no use in applications.
Another body of work has cataloged developer mistakes when
using these libraries to validate certificates, resulting in man-
in-the-middle vulnerabilities [1]–[3].

A related problem is that the reliance on application devel-
opers to implement security inhibits the control administrators
have over their own machines. For example, an administrator
cannot currently dictate what version of TLS is used by
applications she installs, what cipher suites and key sizes
are used, or even whether applications use TLS at all. This
coupling of application functionality with security policy
can make otherwise desirable applications unadoptable by
administrators with incompatible security requirements. This
problem is exacerbated when security flaws are discovered in

applications and administrators must wait for security patches
from developers, which may not ever be provided due to
project shutdown, financial incentive, or other reasons.

The synthesis of these two problem spaces is that developers
lack a common, usable security API and administrators lack
control over secure connections. In our work, we explore a
solution space to these problems through the POSIX socket
API and operating system control.

III. BASIC DESIGN

Under the POSIX socket API, developers specify their
desired protocol using the last two parameters of the
socket function, which specify the type of protocol (e.g.,
SOCK_DGRAM, SOCK_STREAM), and optionally the protocol
itself (e.g., IPPROTO_TCP), respectively. Corresponding net-
work operations such as connect, send, and recv then
utilize the selected protocol transparently.

We have developed a prototype SSA as a loadable Linux
kernel module. This module extends the operating system
networking interface, adding the IPPROTO_TLS protocol
option to socket. When a developer creates a TLS socket,
subsequent calls to POSIX socket functions such as connect,
send, and recv would then properly utilize the TLS hand-
shake, encrypt and transmit data, and receive and decrypt data
respectively, based on the TLS protocol.

IV. ADMINISTRATOR CONTROL

The SSA is responsible for automatic selection of TLS ver-
sions, cipher suites, and extensions. It also performs automatic
session management and automatic validation of certificates.
These behaviors are subject to a system configuration policy
with secure defaults.

Administrators can customize the behavior of the SSA
through a protected configuration file, controlling TLS version
and cipher suite selection, certificate validation strategies, TLS
extensions, etc. Settings are applied to all TLS connections
made with the SSA. These can be further tailored to individual
applications through the creation of additional profiles, which
contain settings for specific applications.

V. DEVELOPER CUSTOMIZATION

The setsockopt and getsockopt POSIX functions
provide a means to support additional settings in cases where
a protocol offers more functionality than can be expressed by



Program
LOC

Modified
LOC

removed
Familiar

with code
Time
Taken

wget 15 1,020 No 5 Hrs.
lighttpd 8 2,063 No 5 Hrs.
ws-event 5 0 Yes 5 Min.
netcat 5 0 No 10 Min.

TABLE I: Code changes required to port a sample of applications to
use the SSA. wget and lighttpd used existing TLS libraries, ws-event
and netcat were not originally TLS-enabled. LOC = Lines of Code

the limited set of principal network functions. In accordance
with this standard, the SSA adds a few socket options for
IPPROTO_TLS. This set includes functionality for developers
to specify remote hostnames, local certificate chains and
private keys, custom certificate validation, session TTLs, etc.
Administrators set policy, while developers can choose to
further restrict an application, such as choosing a particular
cipher suite out of the configured options. Developers can
increase security but cannot decrease it.

VI. PORTING APPLICATIONS

To obtain metrics on porting applications to use the SSA,
we modified the source code of four network programs to
use the SSA. Two of these already utilized OpenSSL for
their TLS functionality, and two were not built to utilize TLS
at all. The lines of code modified, removed, and the time
taken to accomplish the conversion are shown in Table I. The
modification of wget and lighttpd were performed by
programmers with no prior experience with the source code or
OpenSSL, but who had a working knowledge of C and POSIX
sockets. Most of the time spent was used to become familiar
with the source code and remove OpenSSL calls.

These results suggest that porting insecure programs to
use the SSA can be accomplished quickly and that porting
OpenSSL-using code to use the SSA can be relatively easy,
even without prior knowledge of the codebase.

VII. PORTING LANGUAGES

One of the benefits of using the POSIX socket API as the
basis for the SSA is that it makes it easy to provide support
for the SSA in a variety of languages, since the POSIX API is
often implemented at the system call layer. Any language that
uses the network must interface with network system calls,
either directly through machine instructions or indirectly by
wrapping another language’s implementation.

To illustrate this, we have added SSA support to three addi-
tional languages beyond C/C++: Go, Python, and PHP. In each
case the modifications needed were light: Python and PHP
merely required additional definitions of the SSA constants,
and Go required these plus some simple wrappers (2-3 lines of
code each) to be created for its setsockopt/getsockopt
interface. With the changes to the Go standard library, we
successfully modified the popular Caddy webserver to use the
SSA with only the modification of a single line of its code.

Together these efforts illustrate the ease of adding SSA sup-
port to various languages. The majority of the work required
is to define a few constants for existing system calls.

VIII. DISCUSSION

The SSA itself and the architecture of our prototype both
have compelling benefits. By conforming to the POSIX API,
using TLS becomes a matter of simply specifying TLS rather
than TCP during socket creation and setting a small number
of options through setsockopt. All other networking calls
(e.g. bind, connect, send, recv) remain the same, al-
lowing developers to work in a familiar API. This simplified
TLS interface allows developers to focus on unique applica-
tion logic, rather than spending time implementing standard
network security with complex APIs.

Because our SSA design moves all TLS functionality to the
operating system, administrators can configure TLS behavior
on a system-wide level, and tailor settings of individual
applications to their specific needs.

By implementing the SSA with a kernel module, developers
who wish to use it do not have to link with any additional
userspace libraries. With small additions to libc headers,
applications in C/C++ can use the new constants defined for
the IPPROTO_TLS protocol. Other languages can be easily
modified to use the SSA, as demonstrated with our efforts to
add support to Go, Python, and PHP.

Adding TLS to the Linux kernel as an Internet protocol
allows the SSA to leverage the existing separation of the
system call boundary. Due to this, privilege separation in TLS
usage can be naturally achieved. For example, administrators
can store private keys in a secure location inaccessible to
applications. When applications provide paths to these keys
using setsockopt (or use them from the SSA configura-
tion), the SSA can read these keys with its elevated privilege.
If the application becomes compromised, the key data (and
master secret) remains safely outside the address space of the
application, inaccessible to malicious parties.

REFERENCES

[1] BRUBAKER, C., JANA, S., RAY, B., KHURSHID, S., AND SHMATIKOV,
V. Using frankencerts for automated adversarial testing of certificate
validation in SSL/TLS implementations. In IEEE Symposium on Security
and Privacy (SP) (2014), IEEE, pp. 114–129.

[2] FAHL, S., HARBACH, M., MUDERS, T., BAUMGÄRTNER, L.,
FREISLEBEN, B., AND SMITH, M. Why Eve and Mallory love Android:
An analysis of Android SSL (in) security. In ACM Conference on
Computer and Communications Security (CCS) (2012), ACM, pp. 50–
61.

[3] GEORGIEV, M., IYENGAR, S., JANA, S., ANUBHAI, R., BONEH, D.,
AND SHMATIKOV, V. The most dangerous code in the world: validating
SSL certificates in non-browser software. In ACM Conference on
Computer and Communications Security (CCS) (2012), ACM, pp. 38–
49.

[4] HE, B., RASTOGI, V., CAO, Y., CHEN, Y., VENKATAKRISHNAN, V.,
YANG, R., AND ZHANG, Z. Vetting SSL usage in applications with
SSLint. In IEEE Symposium on Security and Privacy (SP) (2015), IEEE,
pp. 519–534.


