
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Poster: Clustering Malware from Creation Tools

Using Code Clones

Christopher I. G. Lanclos

Department of Computer Science

and Engineering

Mississippi State University

Starkville, USA

cl691@msstate.edu

Dae Glendowne, Ph.D.

Department of Computer Science

Stephen F. Austin State

University

Nacogdoches, USA

glendowndj@sfasu.edu

Christopher Archibald, Ph.D.

Department of Computer Science

and Engineering

Mississippi State University

Starkville, USA

archibald@cse.msstate.edu

John A. Hamilton, Ph.D.

Department of Computer Science

and Engineering

Mississippi State University

Starkville, USA

jah514@msstate.edu

Abstract— Malware development and creation has been on

the rise for many years and is expected to continue in this trend.

One of the reasons for this trend is the ease of creating variants

of malware. This research is clustering malware using code

clones that are found in the assembly of the different variants of

malware to create phylogenetic graphs. This research looks at

malware developed from malware creation tools and evaluating

the clusters using external and internal criteria.

Keywords—Malware Analysis, Machine Learning, Clustering,

Code Clones, Phylogenetic

I. INTRODUCTION

In 2016, around 357 million new pieces of malware were
first detected, which is in addition to the 355 million pieces of
malware that were detected in 2015 and 274 in 2014 [1]. One
of the reasons for such an increase is new malware are based
on other malware variants [2]. The development of malware
variants is as simple as making slight changes to the source
code or even changing compiler settings, which would render
signature-based detection tools unreliable. The reuse of code
by malicious agents makes the workload of analyzing malware
more difficult, due to the amount of malware that needs to be
analyzed. The process of analyzing malware through either
dynamic or statistical means is costly, either by time,
computationally or both.

One of the most informative ways to analyze malware is
reverse engineering. Reverse engineering tries to understand a
system by identifying key components, artifacts and the
relationship between them. In other words, malware analysts
can learn what is done by the different variants. Although
reverse engineering is one of the most thorough ways to
analyze malware, it comes with a high cost of time. In malware
analysis, reverse engineering can be beneficial because access
to the source code of the malware is rarely available.

Due to the trend of creating malware from previous pieces
of malware, research has emerged to find ways to discover
malware that share code bases. One of the ways that have been
researched is code clones. Code clones are complete copies of
a section of source codes or a piece of source code that has
been slightly changed but has the same function [3]. Another
technique that has been used to find relationships between
malware is the machine learning concept called clustering.
Clustering has been applied to both dynamic and static

malware analysis techniques. Hierarchical clusters have also
been considered as a technique to analyze malware.
Hierarchical clustering follows a similar process of clustering
malware but recursively considers the need to split a cluster
[4].

Hierarchical clustering and clustering in general are used
many times to create machine learning classification tools,
which would help with a labeling issue that is present in the
malware analysis community. Currently, the practice is to use
the labels that are provided by the antivirus software. The
purpose of this research is to deduce the viability of code
clones as features in hierarchical clustering of malware to
determine phylogenetic relationships. In addition, it would lead
to possibly creating a better labeling system then the inherent
labels provided by antivirus software.

II. BACKGROUND

A. Code Clones

Code clones are grouped into two categories: textual and
semantic. Textual code clones are based on the similarity of the
actual code, while semantic code clones look at the similarity
in the functionality even if they are implemented differently.
Within those two categories of code clones there are four types
of code clones:

 Type 1 (Textual): Identical code fragments except for
white space, layouts, and comment variations.

 Type 2 (Textual): Structurally and syntactically
identical fragments except for variations in identifiers,
literals, types, layouts, and comments.

 Type 3 (Textual): Copied fragments with further
modifications. Statements can be changed, added, or
removed, in addition to variations in identifiers,
literals, types, layouts, and comments.

 Type 4 (Semantic): Are based on code fragments,
which perform the same computation, but are
implemented using different syntactic variants.

Usually, code clones are based on source code [3], but there
is a growing interest in code clones based on the binary of
software. The first reason is that there has been an increase in
software piracy [3]. The second reason is the increase of new

malware variants that are based on other malware samples [2].
As mentioned before the yearly increase in malware is
staggering, without doubt is connected to the reuse of existing
malware or free malware creation tools [5].

Detection of malware is predominately done with
signature-based tools that leave systems vulnerable to new
variants of malware. A change in the source code of a malware
sample changes the signature of that malware, which makes
signature-based tools ineffective against new variants.
Currently, malware analysts would have to reverse engineer
each of the new variants until they realized the shared
components of already existing reversed engineered malware,
which could never happen due to the number of pieces of
malware that need to be reversed. Code clones have already
started being used to assist in this area.

B. Clustering

In machine learning, clustering techniques seek to divide
the whole data set into homogeneous clusters where similarity
inside of a given cluster is maximized, while similarity of a
piece of malware outside of given cluster is minimized [4].
This may seem redundant to code clones, but code clones only
determine if the same code clones exist in two or more
different pieces of malware. Code clone detection does not
provide information about the similarity of the whole malware
outside of sharing a code clone. It also does not reveal anything
about the relational differences malware have with each other.

Clustering has been applied to both dynamic and static
malware analysis techniques. Dynamic malware analysis is the
process of observing and analyzing malware while it is
running, while static analysis is examining the executable
without running the malware. Examples of dynamic features
used in clustering include OS objects and operations [6].
Control flow graphs, binary sequences, opcodes and mnemonic
sequences are all static feature types that have been used in
clustering malware [7]. Hierarchical clustering and
phylogenetic modeling are closely related because they both
organize malware into families and provide information about
the relationships between malware [8].

Phylogeny is the set of derivate relationships between a
group of species [9]. As a result, malware phylogeny models
are estimations of the derivation between the relationships of a
malware sample set [9]. In short, malware phylogeny models
seek to represent the relational similarities or differences in a
set of malware samples. The use of phylogeny in malware
analysis is not a well-researched area, but it is believed that
deriving such information will be beneficial to the malware
analysis community [9]. The benefits of phylogenetic malware
clustering can highlight essential features of malware, reveal
unknown relationships and the strength of those relationships
and reveal outliers in particular datasets.

III. METHODOLOGY

A. Malware Sample Set

This research examined malware created by malware
creation tools, which would consist of 300 samples. The
malware is limit to samples that are Windows 7 compatible.

Windows 7 was a focus for two reasons, the first being that it
provides a big enough data sample. The second reason is for its
wide use. All samples were tested to identify if they were
packed and if so were discarded. After gathering the sample
sets, traditional static features were extracted for external
criteria validation. Afterward, the code clones were identified
using Kam1n0 [10]. Kam1n0 examines each of the samples
and detect the code clones in that sample set. The code clones
found by Kam1n0 are hashed and used as features. Other
features are used that are derived from code clones such as the
ratio of code clones in samples and ratio of exact code clones
to inexact code clones.

B. Hierarchical Clustering

The hierarchical clustering of the malware samples is done
twice. The first phylogenetic graph was created based on the
traditional static features. The second was based on code clone
features extracted from Kam1n0. The first phylogenetic graph
serves as ground truth to the second. The validity of the
phylogenetic graph is based on the ground truth that is known
about the malware from the different creation tools. Also, the
goodness of the clusters from the second phylogenetic graph,
which is the cohesiveness and separation of the clusters.

IV. CONCLUSIONS

The cost to develop malware versus the cost to analyze
malware is drastically different. This research is focused on
reducing that time by showing the relationship between
malware through the development of phylogenetic graphs
using code clones. The clustering of code clones in the manner
this research is proposing has not been done.

REFERENCES

 [1] “Internet Security Threat Report 2016 | Symantec.” [Online]. Available:

https://www.symantec.com/en/ca/security-center/threat-report.
[Accessed: 29-Mar-2017].

[2] B. Anderson, C. Storlie, M. Yates, and A. McPhall, “Automating

Reverse Engineering with Machine Learning Techniques,” in
Proceedings of the 2014 Workshop on Artificial Intelligent and Security

Workshop, New York, NY, USA, 2014, pp. 103–112.

[3] M. Dong et al., “A New Method of Software Clone Detection Based on
Binary Instruction Structure Analysis,” in 2012 8th International

Conference on Wireless Communications, Networking and Mobile

Computing (WiCOM), 2012, pp. 1–4.
[4] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine

Learning Tools and Techniques, Third Edition, 3 edition. Elsevier:

Morgan Kaufmann, 2011.
[5] R. A. Nolan and P. P. Chen, “MCARTA: A Malicious Code Automated

Run-Time Analysis framework,” in Homeland Security (HST), 2012

IEEE Conference on Technologies for, 2012, pp. 13–17.
[6] H. T. Wang, C. H. Mao, T. E. Wei, and H. M. Lee, “Clustering of

Similar Malware Behavior via Structural Host-Sequence Comparison,”

in Computer Software and Applications Conference (COMPSAC), 2013
IEEE 37th Annual, 2013, pp. 349–358.

[7] X. Hu, K. G. Shin, and S. Bhatkar, MutantX-S: Scalable Malware

Clustering Based on Static Features.
[8] L. Kellogg, B. Ruttenberg, A. O’Connor, M. Howard, and A. Pfeffer,

“Hierarchical management of large-scale malware data,” in 2014 IEEE

International Conference on Big Data (Big Data), 2014, pp. 666–674.
[9] M. Hayes, A. Walenstein, and A. Lakhotia, “Evaluation of malware

phylogeny modelling systems using automated variant generation,” J.

Comput. Virol., vol. 5, no. 4, p. 335, Nov. 2009.
[10] S. H. H. Ding, B. C. M. Fung, and P. Charland, “Kam1n0: MapReduce-

based Assembly Clone Search for Reverse Engineering.”

