
Poster: Attack Surface Modelling in Trigger Action
Platforms

Pubali Datta, Adam Bates
Department of Computer Science

University of Illinois at Urbana- Champaign
{pdatta2, batesa}@illinois.edu

I. PROBLEM DESCRIPTION

The use of end-user programming in form of trigger- action
rules is becoming increasingly popular with the advancement
of Internet of Things (IoT) and smart technologies. Home
automation platforms like IFTTT, Zapier, Microsoft Flow [1]
are popular among users for their ease of use. These platforms
let users create new functions in their homes by stitching
different IoT devices and online services in the form of simple
rules in natural language, e.g., “If humidity goes over 55%
send notification to open window”. While these platforms can
be used easily, they also pose great security risks through
interplay of several rules installed in a smart-home.

Predominantly mentioned platforms are closed where rule
behaviors are described in only natural language making it
difficult to observe rule interactions leading to security issues.
Previous works [2] have focussed on detecting integrity and
secrecy violation at rule level and user level with a significant
amount of manual work to process natural language rule
descriptions. However, the attack surface of rules installed
in a smart home using such platforms were not discussed
previously. This work aims to process natural language rule
descriptions automatically, without any manual effort, into an
information flow (IF) graph that describes the attack surface
of the smart home. Moreover, our technique enables an user to
perform reachability queries over the IF graph to find sources
of flows to a specific device or service installed in the smart-
home.

Smartthings

Close
Device

LockSwitch on
Open

Device

Unlock

Switched
on

Unlocked
Temperature
rises above

LockedHumidity
rises above

Brightness
rises above

New
motion

detected

Activate
Device

ecobee

Indoor
humidity
change

Presence
Detected

Thermostat
Mode

Change Indoor temp
change

Light Switch
Turned off

Light Switch
Turned on

Set
Thermostat

Mode

Resume
Thermostat

Turn
Switch off

Turn
Switch on

Rule R1
Rule R2

Fig. 1. Initial attempts at building Trigger-Action information flow graphs
suffered from state explosion and false dependencies.

II. PRELIMINARY EXPERIMENTS

To get an idea of how trigger- action rules interact with each
other, we obtained a dataset (2016) of trigger- action rules
from the popular platform IFTTT [3]. Individual rules in this
dataset are in form of “If Trigger, Then Action”, where each
trigger and action is linked to some channel. As an example, in
“If humidity goes over 55% send notification to open window”,
trigger ‘humidity goes over 55%’ is linked to channel Netatmo
Weather Station and action ‘send notification to open window’
is linked to channel IFTTT notifications. In IFTTT platform,
each rule is called a recipe (from 2017, each rule is called an
applet and channel is renamed as service).

We parsed individual recipes in an information flow (IF)
graph as following: Channel → Trigger → Recipe →
Action → Channel. Then we combined IF graphs for all
recipes in a single IF graph. As evident from this single recipe
graph, tracking flow from trigger to action is trivial, because
the flow lies in the rule itself. But tracking flow from an action
to other possible triggers it could invoke is non- trivial since
the descriptions of actions and triggers are in natural language.
So, the simplest way to model inter-rule flows is to link a
service’s inbound actions to all outbound triggers, which leads
to state explosion and spurious flows in the graph (Figure
1). Unfortunately, many of the flows in this graph shows
false flows that does not describe actual rule interaction. For
example, Smartthings’s “Activate Device” action would not
trigger “Presence Detected”; device activation and presence
detection are actually two independent features that can be
manipulated through this service. It is thus apparent that in
order to obtain an accurate and precise attack surface graph,
we must decompose channels into their underlying components
in order to identify true inter-rule flows.

III. SYSTEM DESIGN

We present the system architecture of NLP- aided infor-
mation flow analysis system for trigger- action platforms in
Figure 2. We strive to automatically find precise information
flow from action to trigger using existing natural language
techniques [5]. IFTTT platform website was scraped to collect
recent dataset of applets and service descriptions, 512 Services
and 18892 applets were obtained. These text descriptions act
as an input to our NLP engine.

Syntactic Analysis. Using NLP techniques, text descrip-
tions of actions and triggers are tagged using parts-of-speech

Fig. 2. NLP-aided Information Flow Analysis of Trigger-Action Platforms.

(POS) tags and subsequently dependency parsing is employed
to create a dependency tree for the sentence representing gram-
matical relationships. Using these dependency relationships
and predefined heuristics, syntactic elements can be extracted
from the description, which are - root verb (task), the main
object and the properties of the object. Due to similarity in
descriptions of actions and triggers inside a single service,
syntactic element matching results in detection of flow from
action to trigger.

Semantic Analysis. Unfortunately, syntactic analysis alone
is insufficient to detect all inter-rule flows. This is because
trigger and action text descriptions often refer to semantically-
related objects (e.g., temperature and thermostat) without
referencing the exact same object. This calls for semantic
analysis technique like word to vector embedding [6] to
compute semantic similarity between words. If the similarity
surpasses a predefined threshold between main objects of an
action and a trigger, then we determine a flow from said action
to trigger.

Using the detected flows in NLP engine, the spurious
flows in IF graph in Figure 1 can be pruned leading to a
highly precise graph capturing correct flows among the set of
automation rules. This IF graph can be leveraged by an user
to perform queries e.g., “Which services can affect my door
lock?” and retrieve the attack surface of the specified door
lock.

IV. RESULTS

We manually inspected action and trigger descriptions of
services scraped from the IFTTT platform website to obtain
ground truth. Then we employed our tool and compared the
number of flows detected to the manually computed results,
as shown in Table I. The semantic analyzer is still under
development causing our system to miss several semantic
flows leading to low number of true positives. The false
positive occurs when object properties are specified using
grammar rules our system do not monitor, leading to a false
match.

TABLE I
SUMMARY OF ERROR RATES.

Attribute Observed Value
#True Positive 422
#False Negative 152
#False Positive 1164
#True Negative 5251
FP rate α (type I error) 0.18
FN rate β (type II error) 0.26

#Total flows (naı̈ve strategy) 6989
#Total flows (NLP-aided strategy) 1586 (23%)

V. FUTURE WORK

Refining the semantic analyzer to improve the accuracy
for flow detection is ongoing. Additionally, to test the ef-
fectiveness of our system to find security vulnerabilities in
real environment, representative smart home configurations are
required. Since this information is proprietary to the platforms,
generating practical models of rule configurations in user
homes is another important thread of work.

ACKNOWLEDGMENT

The authors would like to thank Qi Wang and Dr. Carl
Gunter from University of Illinois, Urbana- Champaign for
their helpful suggestions and resources.

REFERENCES

[1] Fernandes et al., Decentralized Action Integrity for Trigger-Action IoT
Platforms, appeared in The Network and Distributed System Security
Symposium (NDSS), 2018.

[2] Surbatovich et al., Some Recipes Can Do More Than Spoil Your Appetite:
Analyzing the Security and Privacy Risks of IFTTT Recipes, in
Proceedings of the 26th International Conference on World Wide Web
(WWW), Pages 1501-1510 , 2017.

[3] Ur et al., Trigger-Action Programming in the Wild: An Analysis of 200,000
IFTTT Recipes, in Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI), Pages 3227-3231, 2016.

[4] Nest Thermostat service in IFTTT, https://ifttt.com/nest thermostat.
[5] Stanford CoreNLP, https://stanfordnlp.github.io/CoreNLP.
[6] GloVe: Global Vectors for Word Representation,

https://nlp.stanford.edu/projects/glove.

2

