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Abstract—Until recently, research on adversarial attacks on
image classification models has focused on the input and the
output layers of the models. This ignores potentially useful
information from the internal layers of the models. In this
work, we investigate the internal layers of image classification
models in the context of adversarial attacks. We observe sig-
nificant differences between outputs of normal and adversarial
inputs at those internal layers. As a case study, we then
use this property to propose an improvement to adversarial
detection based on feature squeezing. Our proposed technique
improves the detection rate significantly over the previous
method that only considered the final layer, and suggest further
opportunities for exploring internal layers.

1. Introduction
There is increasing awareness that machine learning

models, and Deep Neural Networks (DNNs) in particular,
are not robust against adversaries and that carefully-crafted
imperceptible perturbations can cause large changes in the
model output [1], [2]. These types of attacks on the models
are known as adversarial examples.

Most research so far on defending against adversarial
examples for image classification models has focused either
on pre-processing the inputs [3], [4], [5] or retraining the
models using adversarial samples [6], [7]. Work on detection
has focused on the input and output layers of the under-
lying DNN models, ignoring a huge amount of possibly
useful information from the internal layers of the network.
Recently a few works have incorporated internal layers [8],
[9] with promising results. Our work also aims to harness
internal layer information to gain insights into the nature
of adversarial examples, and to use that insight to improve
defenses.

In this paper, we provide the motivation behind our
work by showing properties of the internal DNN layers that
may be useful in distinguishing adversarial examples. We
use this property to improve a defense based on feature
squeezing [3]. Feature squeezing [3] is a framework de-
signed to detect adversarial examples by reducing the often
unnecessarily large feature spaces of DNN models. An input
is squeezed using a pre-processor. Then, the original and
(possibly many) squeezed inputs are fed into the model. If
the model’s predictions on the original and squeezed inputs
exceeds a distance threshold the input is determined to be
adversarial. Simple squeezing methods including bit depth
reduction and local and non-local means smoothing have
been found to be quite effective against some adversarial
attacks against MNIST, CIFAR-10 and ImageNet models,
but ineffective against other attacks including FGSM [3].

Figure 1. Cosine distance between normal-adversarial and normal-random
pairs through the activation layers of CIFAR-10 DenseNet network. Solid
lines indicate median, shaded region has values between 5th and 95th
percentiles.

Whereas the original feature squeezing framework de-
tects adversarial inputs by comparing the difference between
the softmax layer outputs of the original model on the input
and one a pre-processed version of the input, we use the
difference between the outputs at all the internal layers of
the model – not just the final softmax layer. By doing so,
we were able to significantly improve the detection rate
of FGSM adversarial attacks against the CIFAR-10 model,
while preserving the same false positive rate.

2. Model Divergence
By definition, the distance between normal examples and

adversarial examples is limited by an upper bound at the
input layer. But, to be a successful adversarial example, by
the final layer the outputs must be different enough for them
to be assigned to different classes by the model. Hence, the
distance between an adversarial example and its seed must
be small at the input layer, and increase at some layers inside
the network. Moreover, if we cause random perturbation to
a seed, the distance between the randomly perturbed input
and the original seed should be lower than that between the
normal and adversarial pairs.

This understanding is supported by Figure 1 which
compares the cosine distances between normal and random
perturbations (blue) and normal and adversarial (red) pertur-
bations (generated by an untargeted FGSM L∞ attack) on
the CIFAR-10 DenseNet model. For 10,000 test seeds, we
generated one adversarial example each using the FGSM at-
tack, and also one randomly perturbed example on the same
seed. We plot the cosine distance between each normal-
adversarial and normal-random pair for each activation layer



Figure 2. Cosine distance between squeezed and non-squeezed inputs
through the activation layers of the CIFAR-10 DenseNet network. Solid
lines indicate median, shaded region has values between 5th and 95th
percentiles.

of the network. As expected, the distance increases as we go
through the network, and the distance is higher for normal-
adversarial pairs than normal-random pairs.

3. Enhancing Feature Squeezing
The observation from the previous section suggests the

internal layers could be useful for detecting adversarial
inputs, but we cannot directly make use of the observed
property for detection at test time because the deployed
model does not have access to the adversary’s original seed.
However, we show how to harness this property in the
existing feature squeezing framework [3] to improve the
detection rate. Instead of comparing between the sample
and its (unknown) seed, we compare between the sample
and its squeezed sample. Figure 2 shows the average cosine
distance at each activation layer between squeezed and non-
squeezed inputs for both normal and adversarial samples.
There is clear separation between the the normal and adver-
sarial samples through most layers of the network. This is
the property we exploit to enhance the detector.

To detect adversarial samples using the feature squeezing
technique, an input and its squeezed representation are both
passed through the model. As implemented by Xu et al. [3],
the outputs were compared by using the L1 distance at the
final softmax layer. For normal examples, the value of this
score should be low (close to 0), and for adversarial exam-
ples it should be high (close to 2). A detection threshold
was selected based on a target false positive rate of 5%.

Based on our observations about internal distance gaps,
we define a modified score metric that uses the sum of the
cosine distances between internal layer outputs of the non-
squeezed and squeezed inputs:

score(x,xsqueezed) =
1

n

n∑
l=1

dc(gl(x), gl(xsqueezed))

Here, dc(x, y) is the cosine distance between the vectors
x and y; gl(x) is the output of the lth layer of the DNN
for input x; and n is the total number of activation layers

in the network. Similar to the original feature squeezing
framework, we choose a threshold score for detection in a
way that ensures false positive rate is below 5%, and use
that threshold to determine whether a given input is normal
or adversarial.

Results. In the original feature squeezing framework, the
accuracy of the feature squeezing-based detectors was quite
low for FGSM L∞ attacks against the CIFAR-10 classifica-
tion model. Thus, we wanted to see if we could improve the
detection rate using our modified technique. We generated
10,000 adversarial examples for the 10,000 test samples of
the CIFAR-10 dataset using the FGSM non-targeted attack
with ε = 0.1. We found that the best feature squeezer,
2 × 2 median smoothing, achieves a detection rate of just
12%, when the false positive rate is kept below 5%. On the
other hand, our technique achieves detection rate of 98%
on adversarial samples, while maintaining the same lower
than 5% false positive rate.

4. Conclusions
Our preliminary results are encouraging enough to sug-

gest the hidden layers of DNN can be useful for enhancing
the effectiveness of existing defenses against adversarial at-
tacks, but more extensive experiments are needed to evaluate
the effectiveness of the defense. In particular, it is important
to understand how such a defense works against adaptive
adversaries and we are currently working on this. Multi-
layer defenses seem to make the task of an adaptive adver-
sary more challenging because the adversary’s input needs
to produce model divergence in the early layers. We are
optimistic that studying the internal behavior of models will
provide useful insights for mitigating adversarial examples.
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