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Abstract—Secure processor architectures usually add new
hardware features for protecting code and data running on the
system, but today these architectures largely lack formal security
verification. To address this issue, this work presents a design-
time security verification framework for secure processor archi-
tectures. Our new SecChisel framework is built upon the Chisel
hardware construction language and tools, and uses information
flow analysis to verify the security of a design at compile-time. To
enforce information flow security, the framework supports adding
security tags to wires, registers, modules and other parts of the
design, defining a custom security lattice and custom information
flow policies. The framework performs automatic security tag
propagation analysis in a parser and information flow checking
using Z3 SMT solver. This framework is evaluated on RISC-V
Rocket Chip expanded with AES and SHA modules.

I. INTRODUCTION

Many secure processor architectures have been designed
over the last decade, such as XOM [1], AEGIS [2], and Hy-
perWall [3]. They all implement some new security protection
mechanisms, such as encryption and hashing, to protect code
or data. However, most of these architectures have not been
thoroughly and formally verified from the security perspective.

To help perform security verification of such architectures,
this work proposes a new methodology and its realization
in the new SecChisel framework, which incorporates desired
security properties directly into hardware description code. To
demonstrate how SecChisel can protect secure processor ar-
chitectures, the framework is validated on the Rocket Chip [4]
RISC-V processor by implementing and verifying AES and
SHA security modules realized as Rocket Custom Coprocessor
Interface (RoCC) accelerators within the RISC-V processor. In
addition, synthetic hardware Trojans (HTs) are introduced into
the AES and SHA modules to show how the framework can
protect against secret information from leaking out if there are
hardware bugs or malicious hardware Trojans.

The contributions of this work are:
• The first framework to verify security properties at the

higher abstraction level of the Chisel hardware construc-
tion language, and using information flow techniques and
SMT solver to formally verify an architecture.

• Flexible security verification framework supporting static
and dynamic tags, declassification mechanisms, nested
modules, and interference tables.

• Evaluation the functionality and performance of the
framework with AES and SHA RoCC, showing fast
run time and ability to detect information leaks due to
hardware Trojans.

II. FRAMEWORK

New SecChisel framework extends the existing Chisel [5]
language and tools with new security functionality. The Sec-
Chisel workflow is shown in Figure 1. A designer-specified
lattice indicating the security level of data is written as part
of the SecChisel code. SecChisel extends data types within
Chisel with security tags showing the security level. This
allows designers to annotate the design with the security tags
associated with the various wires, registers, or other parts of the
design. We include idea of both static and dynamic tags. For
dynamic tags, the designer can specify the tag-range functions
in SecChisel code as well.

A design in the SecChisel code is first parsed into a
modified FIRRTL (Flexible Intermediate Representation for
RTL) [6] and then the logical statements that can be used with
the Z3 SMT solver [7] are generated. The statements check
for information flow violations based on the security tags. The
SMT solver is used to assert that there are no disallowed data
transfers between registers, wires, etc., which could violate the
security policy for enforcing confidentiality: it is not allowed
that variables bound to the higher security tags leak their
data to the variables with lower security tags. The security
verification steps can be done in parallel with compilation and
simulation of a Chisel design.

The whole SecChisel workflow consists of:
1) SecChisel Code – code that defines a design, including

the new security tags, lattice tag description, and dynamic
tag-range functions.

2) SecChisel Parser – the tool used to generate the modified
FIRRTL that contains not only functional description of
the circuits, but also information about the security tags.

3) FIRRTL Code – FIRRTL code with information of
security tags.

4) SMT Code Generator – tool for analyzing the infor-
mation flow and parsing FIRRTL into a FIRRTL state-
ment/expression tree, which is then processed into SMT
statements understood by an SMT solver by dealing with
nested modules of FIRRTL code.

5) SMT Code – SMT code describing the lattice tags,
dynamic tag-range functions, data flows, and assertions
for information flow checking.

6) Parallelization – parallelizing SMT code according to the
number of processor cores available of the machine.

7) Z3 SMT Solver – the tool which does the actual in-
formation flow checking and generates the satisfiable or
unsatisfiable result from the SMT code.
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Fig. 1: SecChisel verification workflow. Square boxes represent files or data, ovals represent tools or processes. Black dashed line circles
pre-existing baseline Chisel running process. Green dashed line includes whole SecChisel flow. Because of the embedded security tags of the
code design, single codebase can be used for both security verification and generating the hardware design. Especially, white part shows that
the unmodified Chisel tools can be used to generate the hardware design, while the new SecChisel components perform the security checks.
The use of third-party modules and interference table is optional in addition to help support third-party IP.

TABLE I: Effectiveness of AES RoCC and SHA RoCC within
Rocket Chip. FP represents False Positive. HT represents Hardware
Trojan.

Module Name
SecChisel Feature Used Formal

Static Dynamic Declassi- Verification
Tag Tag fication Result

AES RoCC v1 X × × found FP
AES RoCC v2 X × X verified
AES RoCC v2
w/ HT1 X × X found HT

AES RoCC v2
w/ HT2 X × X found HT

AES RoCC v2
w/ HT3 X × X found HT

SHA RoCC v1 X × × found FP
SHA RoCC v2 × X × verified

8) Interference Table – Optional step involving third-party
modules and interference table.

III. EVALUATION

SecChisel framework is implemented upon Chisel [5].
To evaluate the effectiveness and performance of SecChisel,
an AES-128 and a SHA-256 accelerators were implemented
as Rocket Custom Coprocessor Interface (RoCC) within the
Rocket Chip RISC-V processor. The SecChisel framework can
process the whole Rocket Chip as it can handle both SecChisel
code and unmodified Chisel code. And in our evaluation,
both AES RoCC and SHA RoCC only need tens of lines
of SecChisel code to verify the whole circuit. Therefore, the
designers’ efforts are low. We evaluate RoCC cores within
RISC-V cores, which supports high-speed simulation and
full synthesis. Our framework works with the whole Rocket
Chip and can find improper information flows due to bugs
or hardware Trojans as shown in Table I. The framework
will detect false positives which are fixed in the designs.
Furthermore, three synthetic hardware Trojans are inserted in
the AES RoCC, SecChisel is able to detect all of them correctly
as it finds information flow of “High” data to “Low” outputs.
The security verification of the designs takes an average about
1300s for each accelerator, while compilation of the Rocket
Chip with RoCC takes about 1500s. This shows that the
verification step can be done in parallel with the compilation
of the design and generally does not introduce new overhead.

IV. CONCLUSION

SecChisel implements the first security verification frame-
work based on the Chisel hardware construction language. The
framework supports both static and dynamic tags, and allows
system designers to implement custom security tag lattices.
It is also able to handle nested modules and interference
tables. For evaluation, SecChisel is tested by implementing and
verifying AES-128 and SHA-256 RoCC accelerators within
a Rocket Chip RISC-V processor. SecChisel is also able to
detect information leaks due to hardware Trojans. Furthermore,
SecChisel verification will not cause extra overhead to the
original Chisel design because the total verification time in
our experiments is always smaller than the compilation plus
simulation time and the verification can be done in parallel
with compilation and simulation.
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