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Abstract—The Tor anonymity system helps Internet users to
hide their online browsing behavior. Unfortunately, the website
fingerprinting (WF) attack has become one of the most serious
threats for Tor users. Previous studies have shown that WF
attacks using deep learning techniques such as Convolutional
Neural Networks (CNN) are very effective and can undermine
the WTF-PAD defense that is being considered seriously for
deployment in Tor. These attacks, however, cannot break the
recently proposed Walkie-Talkie defense, which effectively con-
ceals the packet sequences that are used as the main features
for most WF classifiers. Since most attacks do not consider
timing features, Walkie-Talkie does not seek to modify the timing
of packets. Thus, it is important to understand the extent to
which timing features can be effectively used in WF attacks and
potentially undermine Walkie-Talkie. We applied the Capsule
Network (CapNet) deep learning architecture to create a WF
classifier with timestamps as the data input representation.
Our experimental evaluation shows that using timestamps with
CapNet provides promising results on unprotected Tor data with
88% accuracy and an acceptable cost for training. We believe
that further refinement is possible to improve the WF attack and
will explore this in future work.

I. INTRODUCTION

Tor provides anonymity to millions of users as they visit
sites and services online. Recent work has shown, however,
that an eavesdropper can unmask the sites that a client is
visiting by using a traffic analysis attack called website finger-
printing (WF). In a WF attack, depicted in Fig. 1, the adversary
observes the traffic between the client and the guard, the first
node in the user’s Tor circuit. He then extracts input features
from the traffic and supplies them as input to a machine
learning (ML) classifier that aims to recognize which website
the user has visited. Recent WF attacks have been shown to be
effective with over 90% accuracy against Tor using classifiers
such as k-NN [1], SVM [2] and k-FP [3].

In the past year, studies have shown that the adversary could
apply deep learning techniques such as Convolutional Neural
Networks (CNN) to perform even more effective WF attacks.
Rimmer et al. [4] used deep learning to automatically extract
traffic features for WF attacks and could achieve 96% accuracy
using CNN. However, Rimmer et al. did not evaluate their
attacks against existing WF defenses such as WTF-PAD [5]
and Walkie-Talkie (W-T) [6]. Sirinam et al. [7] explored the
design of an improved CNN classifier with that reached 98%
accuracy. Moreover, they showed that their CNN WF attack

Fig. 1. The WF threat model

attains over 90% accuracy against WTF-PAD, a defense that
is currently being implemented in Tor [8].

To date, no attacks have proven to be effective against W-
T. W-T creates a super-trace, in which least two different
websites’ traces are molded together in terms of packet di-
rection and size. Since the state-of-the-art WF attacks have
mainly relied on the use of packet direction and size as the
data input representation, W-T is very effective at undermining
these attacks. As a result, the classifier cannot gain any useful
information to make a prediction based upon the distinction
among different packet sequences.

In this paper, we conduct a preliminary experimental evalu-
ation to investigate the use of a different data input represen-
tation for WF attacks based on packet timing. Most attacks
ignore timing information or deemphasize timing features [3],
as it can be very noisy. We apply the recently proposed deep
learning technique called Capsule Networks (CapNets) [9],
which was shown to outperform CNNs in image recognition
tasks, and we find that it offers promising initial performance
on timing data. As future work, we plan to further investigate
how to effectively apply timing as the additional features to
help the classifier make better and more accurate predictions,
especially against state-of-art defenses and in larger-scales
attack in the open-world scenario.

II. WF ATTACK USING CAPSULE NETWORKS

Dataset. We use the same dataset as Sirinam et al. used
for their study on deep learning [7]. The dataset contains 95
monitored websites (classes), where each website was down-
loaded 1000 times. Each download generates one instance
that is represented as a sequence of tuples <timestamp,
±packet size>, where the sign of packet size indicates the
direction of the packet: positive means outgoing and negative
means incoming. We use hold-out validation to categorize
dataset into three groups for each website with a ratio of 8:1:1
for training:validation:testing instances.



Fig. 2. Hyperparameters in our CapNet model

TABLE I
TIME REQUIRED TO TRAIN THE MODEL FOR DIFFERENT TRAINING SIZES

Training Size / Class 80 240 400 560 640 800
Training Time (Hours) 4.4 14.1 23.3 32.7 37.1 45.3

Hyperparameter Tuning. Compared to CNNs, CapNets re-
quire significantly more resources such as the number of
parameters and longer training time. To apply CapNet with
our large dataset, we have to perform hyperparameter tuning
to create a model that can be run with our limited computing
resources (NVIDIA Quadro P5000 with 16 GB of GPU
Memory) and still provide good performance. Fig. 2 visualizes
the selected hyperparameters used in our model. In future
research with more computing resources, the model will be
able to be optimized further and achieve better performance.

Data input. In this work, we mainly focus on the use of
timing information as the new data input representation. Thus,
we only extract the timestamp from each sequence of tuples
to create a list of timestamps. We then adjust the data input
by following the CapNet implementation. In the CapNet, the
sequence of timestamps is reshaped into a 2D matrix. We
studied the appropriate shape for the input and found that 40
rows x 40 columns provides reasonable performance and still
allows the CapNet runnable with our limited resources.

Results. We implemented the CapNet by using Keras with
Tensorflow as the backend. We first evaluate the effect of
training input size on its accuracy as shown in Fig. 3. We found
that the accuracy gradually increased as with more training
inputs, slowly improving up to 720 training inputs and then
began leveling off. The maximum accuracy was 88%, which
suggests that using packet timing is a promising research
direction to improve the performance of WF attacks.

We also investigate the training time, the total amount of
time required to complete training the WF classifier using
CapNet. The time required for training is an important factor
for the practical implementation of the model. Table I shows
that the rate of training time required to create the CapNet
WF model grows linearly with the number of training inputs.
The most accurate model required approximately two days to
create the WF classifier, which is much slower than we found
for CNN (about two hours), but may be acceptable for a well-
resourced attacker.

III. CONCLUSION AND FUTURE WORKS

In this paper, we investigate the use of packet timing as
a feature to perform website fingerprinting (WF) attacks.

Fig. 3. Accuracy vs. training size

Using a CapNet classifier and optimizing the hyperparameters,
we attained up to 88% accuracy with an acceptable cost of
training. For future work, we plan to further investigate and
improve the CapNet architecture to improve the performance
of the attack. Moreover, we will study the use of packet timing
in the more realistic open-world scenario and against defenses
such as WTF-PAD and Walkie-Talkie.
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