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I. INTRODUCTION

Deep learning has achieved remarkable success in various
areas, such as computer vision and natural language process-
ing. However, recent studies also highlight that deep neural
networks (DNNs) are vulnerable to adversarial examples
created by adding small but purposefully crafted perturbations
to natural targets. These perturbations may lead to mis-
classification on DNNs and jeopardize the application safety.
Although many countermeasures have been proposed, most
of them only detect/reject adversarial examples, instead of
reforming adversarial examples back to corrected ones.

Here, we propose REMIX to distill and rectify adversarial
perturbations toward correct classification. Unlike other pro-
posals (e.g., [9]), REMIX dispenses the assumption of prior
knowledge about how attackers craft adversarial examples.

II. RELATED WORK AND BACKGROUND

Existing Attacks. Various adversarial perturbations can be
crafted using optimization-based approaches. In this paper, we
use two state-of-art attacks to evaluate our proposed defense.

• CW Attack. Carlini and Wagner attack [2] can generate
adversarial examples with imperceptible perturbations.
Given a natural image x and an adversarial perturbation
δ, CW attack can be formulated as the following opti-
mization problem:

minimizeδ ||δ||22 + c · f(x+ δ)

s. t. x+ δ ∈ [0, 1]n.
(1)

We refer readers to [2] for the attack loss f(·) and method
for choosing the constant c.

• EAD Attack. Generalizing from CW attack, Chen et al.
[5] propose an elastic-net regularized attack. Specifically,
EAD features `1-based adversarial examples and include
the CW attack as a special case. In many cases, EAD
attack is easier to bypass the defense than CW attack.

Both EAD and CW attacks have a confidence level parameter
κ to control the transferability in adversarial examples. Higher
κ results in more transferable adversarial examples.

Existing Defenses. Many defenses have been shown to
be ineffective against optimization-based attacks [1], [4]. Re-
cently, Meng and Chen propose MagNet [7], which uses the
complementarity of reformer and detector to achieve signif-
icant defensive capability. However, MagNet cannot defend
against adaptive white-box attacks [3]. Samangouei et al.
propose the Defense-GAN [8], which uses the randomness

of GAN to defend white-box attacks. However, due to the
low reconstruction ability of GAN, Defense-GAN cannot be
applied to more complex datasets, e.g. CIFAR, ImageNet, etc.

Threat Model. Given a defense df , depending on an
attacker’s knowledge, attacks are divided into three categories:

• Black-box: attacker knows nothing about df .
• Gray-box: attacker knows everything except the network

parameters of df , e.g., structure, training process, etc.
• White-box: attacker knows everything including the net-

work parameters of df .

III. PROPOSED REMIX SOLUTION

Successfully adversarial perturbations are carefully designed
and are expected to be as small as possible in order to maintain
similarity to natural examples. Motivated by this phenomenon,
the delicate perturbations can be possibly vulnerable to dis-
ruptions and hence the adversarial examples can be rectified.
Using this philosophy, we propose a defense mechanism,
REMIX, that mitigates adversarial perturbations by reforming,
randomly masking, and inpainting masked images to rectify
adversarial examples.

REMIX is composed of three modules: reformer, random
mask generator and inpainter, as illustrated in Fig. 1. The
reformer module is optional but we find that it is effective
in defending against adversarial examples with higher confi-
dence. Below we describe the designs and functionalities of
each component. The detailed performance analysis is given
in section IV.

Reformer. Similar to MagNet’s reformer, we use denois-
ing convolutional autoencoder as the reformer of REMIX.
However, to maintain the test accuracy, we use the simplified
convolutional autoencoder with symmetric skip connections
[6] as our reformer. The reformer takes images as inputs and
outputs the reformed images by learning the manifold of nat-
ural images. Nonetheless, the reformer is useful in mitigating
adversarial examples of low and moderate confidences, but is
often misled by high-confidence adversarial examples.

Random Mask Generator. As we randomly mask an input
image, the structure (e.g., masked pixels for inpainting) of
adversarial perturbations would be disrupted while an natural
image (or its correct label) could be restored via inpainting,
which is trained with masked natural images. When random
masking an colored image x, we first generate a black image m
with |m| = |x|1. The pixel positions2 1, . . . , |m| are randomly

1The notation |x| denotes the size of an image x.
2We assume a natural order of pixel positions.



Fig. 1. Overview of the REMIX structure. The mask-inpaint procedure could be repeated multiple times and thus we use the notations x̂k , mi(k), and x̂∗
to denote x̂ in the kth iteration, mi in the kth iteration, and the output of the final iteration of mask-inpaint procedure, respectively. Note that in the very
first iteration k = 0, the notation x̂0 = x̂ refers to the output the reformer.

partitioned into n sets, P1, . . . , Pn. We generate n random
masks m1, m2, . . . , mn in such a way that mi

j = 0 if j ∈ Pi
and mi

j = 1 otherwise, where mi
j denotes the jth pixel of

mi. After mask generation, we then apply each of them to
x, so as to produce n masked images m1x, m2x, . . . , mnx,
where mix is the pixel-wise multiplication of mi and x. For
gray-scale images, we generate masks in a similar way.

Inpainter. Like reformer, since convolutional autoencoder
with symmetric skip connections performs well in high-
resolution image restoration, we use the simplified one as our
inpainter. The major task of inpainter is to inpaint (restore) the
masked images back to original images as close as possible.
Taking the masked images m1x, . . . , mnx as input, inpainter
will generate the corresponding inpainted images x̂1, . . . , x̂n.
After that, we combine the inpainted images according to their
original masked positions to derive an integrated inpainted
image x̂, which can be formulated as

x̂ =

n∑
i

x̂i · (1−mi). (2)

The entire mask-inpaint procedure can be repeated multiple
times. As the number of repetitions increases, we have more
chances to drive high-confidence adversarial examples to the
correct class prediction, but may degrade the quality of images.

IV. EXPERIMENT SETUP

We compare REMIX with MagNet under CW and EAD
attacks on MNIST and CIFAR-10 datasets in the oblivious
attack setting, where the attackers can access the DNN model
parameters but are unaware of the deployed defenses. For
EAD attack, we use the elastic-net (EN) distortion decision
rule with the regularization parameter β = 0.1 to generate
the adversarial examples. For both CW and EAD attacks,
1000 adversarial examples are crafted with confidence level
κ in the range [0, 40] and [0, 100] on MNIST and CIFAR-10,
respectively. In REMIX, we use n = 2 masks on MNIST
and n = 3 masks on CIFAR-10, and do not repeat the
mask-inpaint procedure, though multiple iterations of mask-
inpaint operations are allowed. The protected classifier has
99% accuracy on MNIST and 86% accuracy on CIFAR-10.
The experimental results are shown in Fig. 2.

V. DISCUSSIONS AND CONCLUSIONS

Comparing to MagNet, our mask-inpaint mechanism outper-
forms their reformer in most of confidence levels. Additionally,
when combined with the reformer, our REMIX defense against

Fig. 2. Defense performance with different confidence of CW and EAD
attacks on MNIST (first row) and CIFAR-10 (second row). The performances
are evaluated by the percentage of correctly classified adversarial examples.

high-confidence adversarial examples can be enhanced quite
significantly. It is worth mentioning that since our defense has
randomness in the test time, it imposes additional challenges
on white-box attacks. More attack iterations and distortions are
expected to bypass random masking and inpainting if possible.
There are also many potentials of REMIX to be explored; for
example, the distributional difference in x̂1, . . . , x̂n could
be used to detect adversarial examples by measuring their
distances or divergences from the input images.
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