
Poster: A Novel Framework for User-Key
Provisioning to Secure Enclaves on Intel SGX

Takanori Machida, Dai Yamamoto, Ikuya Morikawa, Hirotaka Kokubo, Hisashi Kojima
Fujitsu Laboratories Ltd., Kawasaki, Japan

Email: {m-takanori, yamamoto.dai, morikawa.ikuya, kokubo.hirotaka, hkojima}@jp.fujitsu.com

Abstract—Intel Software Guard Extensions (Intel SGX) pro-
tects user software from malicious software by maintaining the
confidentiality and integrity of the software executed in secure
enclaves on random access memory. However, the confidentiality
of its stored executable is not guaranteed. Therefore, secret
information, e.g. user keys, should be provided to the secure
enclaves via appropriate secure channels. In this paper, we
propose a novel framework for user-key provisioning to secure
enclaves on Intel SGX.

I. INTRODUCTION

Intel Software Guard Extensions (Intel SGX) [1], [2], [3]
is a function included in modern Intel processors and under
contemporary focus as one of the hardware-based isolation
technologies that protects user software from malware for
several years. Intel SGX reserves parts of random access mem-
ory (RAM) for “secure enclaves”. In secure enclaves, stored
data are encrypted with processor internal keys and verified
with message authentication codes in the processor. Since
the trust boundary of Intel SGX is the processor package,
confidentiality and integrity of user software executed in the
secure enclaves is ensured, and user software is protected from
malware outside these enclaves, even if such malware has OS
root privileges.

Beginning in 2017, many researchers published more than a
hundred of papers related to Intel SGX and proposed various
applications for it, e.g. digital rights management (DRM) [3],
system logs [4], and power grid protection [5]. These ap-
plications often include secret information such as keys for
encryption, decryption, authentication, and signing, which are
predefined by an independent software vendor (ISV). Although
these keys (user keys) are protected in secure enclaves on
RAM, an attacker can get the user keys with binary analysis
of SGX executables stored not in RAM but in disc storage
before executions of SGX user software; SGX executables
have no confidentiality1. Consequently, how we set user keys
into user software executed in secure enclaves on RAM
becomes one of the challenges for Intel SGX. In this paper, we
introduce conventional methods of provisioning user-keys to
secure enclaves on Intel SGX, and propose a novel framework.
Our framework utilizes sealing, a function of Intel SGX, and
supports high security at a low cost.

1The integrity of the executable is maintained with a certificate attached to
the executable.

II. INTEL SGX

Section I showed the prime function of Intel SGX: isolated
execution of user software. This section explains other func-
tions: sealing and remote attestation.

Sealing/Unsealing

Software, executed in a secure enclave, sometimes generates
ephemeral data. We might need to reuse the data in the next
execution. The sealing function encrypts such data with seal
keys, which depend on the processor key, which in turn is
based on a symmetric cryptographic scheme. Sealing enables
us to transfer data securely from the secure enclave to storage.
Unsealing regenerates the seal keys and decrypts the encrypted
data. There are two types of seal keys. One is derived from
the processor key and hash value of user software executed in
the secure enclave on RAM, i.e. it is unique for each software
installation. Hence, only when that same software is executed
on the same processor as used in the encryption, can data be
decrypted correctly. The other seal key is derived from the
processor key and hash value of the ISV public key2 that ISV
sets for user software when it is compiled. If ISV sets the
same ISV public key into different software, the data can be
decrypted correctly since the same seal key can be regenerated.
The latter is utilized for sharing sensitive data among software
on the same processor.

Remote Attestation

Remote attestation verifies whether software in secure en-
clave is executed on a genuine Intel processor or not. This
function uses a group signature based on the processor key.
A verifier requests a certificate, signed with a member secret
key derived from the processor key, to the SGX user soft-
ware (prover) via networks. The Intel attestation verification
service verifies the trustworthiness of the certificate anony-
mously using the group public key. The verifier can obtain the
result by asking the service. Remote users can establish secure
communication with SGX software by attaching an ephemeral
public key to the certificate.

III. USER-KEY PROVISIONING TO SGX ENCLAVES

A. Conventional Methods

A challenge of Intel SGX is to provision user keys securely
to secure enclaves on RAM since SGX executables have no

2The public key is essentially used for detecting forgeries of executables.



confidentiality. The first possible solution is the obfuscation
of the user keys inside the executables. Although this can
be demonstrated at low cost, it cannot keep the user keys
completely confidential.

Another solution is to use the remote attestation function.
As mentioned in Section II, remote attestation enables users
to establish a secure communication channel with an SGX
application deployed on a remote platform. The users can
send their keys securely to the SGX application through the
channel. The disadvantages of this method are that using the
third party (Intel) services occasions a cost, and inevitably
requires network communication, i.e. the method cannot be
used in offline environments.

B. Our Framework

Our proposed method realizes complete confidentiality at
low cost. Our framework for user-key provisioning to secure
enclaves consists of two phases: the provisioning phase and
the operation phase.

Provisioning Phase: This phase provides user keys to se-
cure enclaves. Once the phase is completed, SGX applications
using the secure enclaves can utilize the user keys securely.
The only requirement of our framework is that devices where
an SGX executable dedicated for the provisioning phase is
executed are not compromised by malware during this phase.
A situation satisfying the requirement is that the devices have
not yet been used in real-world environments connected to
public networks, e.g. have only been used in environments like
a manufacturing factory that makes the devices, or a closed
network for administrators. The procedure for the provisioning
phase is as follows (also as shown in Fig. 1).

(p-1) The dedicated executable including user keys is set
to a device by an ISV.

(p-2) An administrator executes the executable in a secure
enclave.

(p-3) The executable performs the sealing function in order
to encrypt the user keys with a seal key of the second
type mentioned in Section II, and saves the encrypted
user keys in storage.

(p-4) The dedicated executable with the user keys must
be removed from the device since SGX executables
have no confidentiality.

Operation Phase: In this phase, the SGX applications can
utilize the user keys sealed in the provisioning phase. The
procedure for the phase is as shown below and in Fig. 1.

(o-1) The ISV provides the device with executables of the
SGX applications that have the ISV public key iden-
tical to the one included in the dedicated executable
used in the provisioning phase.

(o-2) An application user or administrator executes the
executables.

(o-3) The executables read the encrypted user keys from
storage, and perform the unsealing function that
decrypts the encrypted user keys with the seal key
derived from the processor key and the identical ISV
public key.

Fig. 1. Our framework of user-key provisioning to secure enclaves on Intel
SGX

(o-4) The user key are utilized in the performance of
the SGX applications, such as DRM and biometric
authentication.

Our framework is not considered for cloud applications
because, in the cloud, it is difficult to demonstrate the pro-
visioning phase in a secure environment for ISV; there is a
potential risk that secrets included in the executable dedicated
for the provisioning phase fall prey to eavesdropping by
insiders at a cloud provider. Consequently, our framework
is suitable for using on edge or endpoint environments be-
cause administrators on these environments can manage the
dedicated executable without exposing it to attackers. We
implemented a prototype of our framework using a commercial
Intel CPU (Intel Core i7 6700K) and evaluated its feasibility.

IV. CONCLUSION

In this paper, we proposed a novel framework for user-key
provisioning to secure enclaves on Intel SGX. Our framework
achieved both security and cost on edge and endpoint envi-
ronments compared to conventional methods.

REFERENCES

[1] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative Instructions and
Software Model for Isolated Execution,” Intel Corporation, White Paper,
Aug. 14, 2013.

[2] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative Technology
for CPU Based Attestation and Sealing,” Intel Corporation, White Paper,
Aug. 14, 2013.

[3] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. del Cuvillo, “Using
Innovative Instructions to Create Trustworthy Software Solutions,” Intel
Corporation, White Paper, Aug. 14, 2013.

[4] V. Karande, E. Bauman, Z. Lin, and L. Khan, “SGX-Log: Securing
System Logs with SGX,” in AsiaCCS 2017, 2017, pp. 19–30.

[5] F. Campanile, L. Coppolino, S. D’Antonio, L. Lev, G. Mazzeo, L. Ro-
mano, L. Sgaglione, and F. Tessitore, “Cloudifying Critical Applications:
A Use Case from the Power Grid Domain,” in PDP 2017, 2017, pp.
363–370.


