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Abstract—The website fingerprinting (WF) attack is one of the
most dangerous threats against the 7or anonymity system. The
attack enables an adversary who can locally observe user’s traffic
to learn about that user’s online browsing activity. Previous stud-
ies have shown high rates of attacker effectiveness by applying
machine learning techniques such as £-NN and SVM classifiers.
The attacker, however, must carefully design the features to be
used in these classifiers. In this paper, we explore the use of
deep learning for the WF attack, which offers the advantage
of not requiring features to be hand crafted. In particular, we
applied a Stack Denoising Autoencoders (SDAE) to construct the
classifier. Our experimental evaluations show that this technique
is fairly effective, at least for a closed-world setting. We believe
that further refinement is possible to improve the attack and will
explore this in future work.

I. INTRODUCTION

Since so much of users’ personal lives is conducted online,
privacy for web browsing has become increasingly impor-
tant.A widely used technology for protecting the privacy of
users’ web browsing behavior is the Tor anonymity sys-
tems [2]. Unfortunately, an adversary can use a website
fingerprinting (WF) attack to break Tor’s privacy protections.
Fig. 1 shows the main WF attack model in which the adversary
is monitoring the network between the client and the guard,
the first Tor node on the client’s path, to observe the client’s
traffic patterns. WF then feeds these traffic patterns as input
to a machine learning classifier that aims to identify which
website the user has visited. In particular, the adversary trains
his classifier to recognize a set of monitored websites. Recent
studies have an accuracy of over 90% accuracy against Tor
using classifiers such as k-NN [4], SVM [7] and k-FP [9]

While these classifiers are widely used, deep learning has
become the state-of-art machine learning technique in many
domains, such as speech recognition, visual object recognition,
and object detection [5]. Furthermore, deep learning does not
require selecting and fine-tuning features by hand. In the WF
domain, there is only one work that we know of on applying
deep learning, in which Abe and Goto applied a Stacked
Denoising Autoencoders (SDAE) [10]. This direction seems
promising, given that Vincent et al. show that SDAE appears
to mostly achieve performance with lower classification error
compared with Support Vector Machine (SVM), Deep Belief
Networks (DBN), and Stacked Autoencoders (SAE) [3].

Mohsen Imani
Department of Computer Science and Engineering
The University of Texas at Arlington
Arlington, Texas, 76013
Email: mohsen.imani @mavs.uta.edu

Matthew Wright
Center for Cybersecurity
Rochester Institute of Technology
Rochester, New York 14623
Email: matthew.wright@rit.edu

Privacy Enhanced Technology
(Tor Network)

Fig. 1. The website fingerprinting adversary model.

In this paper, we conduct a preliminary experimental evalu-
ation of WF attacks using deep learning. We begin by working
with SDAE and following what Abe and Goto proposed [10]
to gain a better understanding of how SDAE can be applied
to WE. We have tried to reproduce their work and thoroughly
investigated on how to apply SDAE to maximize its perfor-
mance. As future work, we plan to apply other deep learning
techniques such as Convolutional Neural Networks (CNN) and
to measure the performance of attack against the state-of-art
defensive mechanisms such as WTF-PAD [8]. We discuss our
current works and preliminary results in the following section.

II. WF ATTACK USING DEEP LEARNING
A. Dataset

We use the same dataset as Wang et al. used for their
study [4]. The dataset contains 100 monitored websites, where
each website was downloaded 90 times. Each download gener-
ates one instance, and each instance comprises a list of (time,
direction) pairs, where the time indicates when the Tor cell
was seen and the direction indicates whether it was sent or
received at the client.

Following standard machine learning techniques, we split
the instances for each website into three groups: 58 instances
for training data, 14 instances for validation data, and 18
instances for testing data. Abe and Goto categorized data into
72 instances for training and 18 instances for testing [10], with
no validation data.

B. Dataset pre-processing

Before start training the classifier, we checked the dataset
and found some invalid instances that contain only a few Tor
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Fig. 2. Customized input to the classifier by first separating outgoing and
incoming traffic and then concatenating them.

cells, e.g. some instances contain only ten lines. These cases
appear to indicate errors that occurred during data gathering.
We thus decided to filter these files out of the dataset. We set
the filter value to exclude any instance that has fewer than 200
cells. Moreover, we set the truncate inputs to a fixed maximum
size of 5000. If the input contains less than 5000 cells, we pad
the input with 0’s to create a vector of size 5000, making the
input size uniform across instances and sites.

C. Experimental Evaluation

1) SDAE configuration: We apply SDAE by using Theano,
a Python library for fast numerical computation for deep
learning that can be run on either a CPU or GPU [11]. We
study the effect of different parameters, including the number
of layers in the neural network, the number of hidden layers,
the number of hidden units in each layer, the pre-training
learning rate, the learning rate, the batch size, and so on.

2) Data representation: We investigate how to customize
the representation of the input data to maximize the perfor-
mance of the classifier. Even though deep learning is known
to be a powerful machine learning method for various types of
data, we have found that changing how the data is represented
can substantially improve the performance of the classifier.
We measured the effects of how different data representations
affect the performance of the classifier. We find that separating
the outgoing and incoming traffic and concatenating them as
two consecutive chunks (outgoing as the first half of the input
and incoming as the second half) as shown in Fig. 2 provides
the highest performance for our experiment.

3) Results: We investigate the performance of the classifier
in the closed-world scenario, in which the user is known to
be visiting one of the monitored sites. We tested SDAE with
both two layers and three layers using the data representation
described above. The output layer was realized by a softmax
function representing labeled monitored websites as class 0 to
class 99. We set fundamental SDAE configurations for training
including finetune learning rate = 0.5, pre-train learning rate =
0.001, batch size = 50, pre-training epoch = 10, training epoch
= 500. These values come from the configurations providing
the highest performance in our tests.

We investigate the accuracy of the classifier with different
numbers of neurons in each hidden layer. Table 1 shows the
results of the closed-world scenario on different numbers of
hidden neurons on each hidden layer; performance with three

TABLE 1
RESULTS OF DIFFERENT NUMBERS OF HIDDEN NEURONS ON THE 15T AND
2ND HIDDEN LAYERS (CLOSED-WORLD SCENARIO)

Accuracy I Tayer
250 500 750 1000
125 | 80.07£0.95 82.33+1.02 82.86+0.71  83.66+0.27
nd 250 | 81.25+0.62 83.99+0.26 84.17£0.39  83.82+0.50
layer 500 - 84334039 84.07£0.95  84.60+0.48
750 - - 84.61+0.36  84.59+0.44
1000 - - - 84.93+0.49

layers was similar. The maximum classifier performance is
around 84% for multiple configurations.

III. CONCLUSION AND FUTURE WORKS

In this paper, we describe the preliminary results of an
experimental evaluation of website fingerprinting using deep
learning. We applied SDAE with different configurations and
find that it works well, though not as effectively as the state
of the art. As future work, we plan to examine ways to further
improve the performance of the attack, including using other
deep learning methods and input representations, studying the
performance of the attack in more the realistic open-world
scenario, and examining its effectiveness against defenses such
as WTF-PAD and Walkie-Talkie [6].
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