

Control-data plane intelligence

 trade-off in SDN
Yash Sinha, Siddharth Bhatia

Birla Institute of Technology and Science, Pilani, India

Abstract— With the decoupling of network control and data

planes, the upcoming Software Defined Networking (SDN)

paradigm advocates better network control and manageability. It

introduces logical centralized control, network programmability

and abstraction of underlying infrastructure from network

services and applications. With global visibility of network state

and central control that eases real time monitoring, policy

alterations etc., it certainly enhances network security inherently.

However, the separation of planes opens up new challenges like

denial of service (DoS) attack, saturation attack, man-in-the

middle attack and so on.

Many of the issues of controller availability, controller-switch

communication delay and scalability can be solved separately by

distributed controllers, out-of-band communication links and

parallelization respectively. Control-data plane intelligence

trade-off has the potential to solve all of these. It increases

controller availability, reduces latency for traffic engineering &

decision making, and improves controller scalability. Moreover,

control-data plane intelligence trade-off enables the control-data

plane communication to be more secure. This will tremendously

offload the processing load on the controller. We present how to

realize control-data plane intelligence tradeoff extending

OpenFlow.

Keywords—OpenFlow, Network Intelligence Tradeoff, SDN

I. INTRODUCTION

Dynamic orchestration of network components via a

software-enabled network control allows for a lot of

flexibility. The recent SDN paradigm [1] promises better

network manageability along with flexible, dynamic network

orchestration by advocating separation of control and data

planes and centralized software based control. In addition, it

provides optimizations for flow abstraction and vendor

neutrality.

Generally, security is an afterthought to be incorporated

into a system after the design is complete rather than being an

integral part of the design process [2]. Security, therefore, was

not an inherent feature of the SDN paradigm. Various research

works in the industry and the academia has shown that several

security attacks can be piloted across various SDN

components across different planes and/or inter-plane

interfaces [3]. Although SDN provides plentiful prospects for

enforcing security solutions which can be flexible, dynamic

and more practical, it is still an open and unexplored area of

research. Fundamental changes such as separation of planes

poses fundamental security issues as well. Among the various

data, control and management planes, the centralized visible

control at the control plane attracts security attacks such as

DoS and Distributed DoS. It is highly targeted due to its

pivotal role as a decision making entity. Moreover, the

communication channels need to be secure and if the

controller’s security is compromised, the whole network can

itself become a threat.

In this paper, we present how to realize control-data plane

intelligence tradeoff extending OpenFlow. It can enable us to

have better security at the data plane as well as the control-

data plane interface (CDPI). This can further help to solve the

issues of controller availability, controller-switch

communication delay and scalability which are otherwise

solved separately by distributed controllers, out-of-band

communication links and parallelization respectively. Further

processor load on the controller will be significantly reduced

by reducing involvement of controller in monitoring network

state and sharing and stateful informing.

The premise is that centralizing all functions at the

controller will lead to unacceptable performance. A thoughtful

and judicious separation of functionality will lead to wider

scalability, enhanced availability, and secure interfaces.

Therefore, we extend OpenFlow to include more

functionalities that have been put at the controller.

Rest of the paper is organized as follows. Section II

describes the issues at CDP. We propose our extension to

OpenFlow in section III. Finally, we conclude in Section IV.

II. ISSUES AT CDPI

A. Controller-switch semantic gap

Stateful applications such as firewalls heavily depend on

the communication between the switch and the controller and

the controllers among themselves. If network state changes,

latency in distribution of this information can lead to incorrect

behavior. The distribution of access control supporting

aggregated flows, multi-tenant controllers, and multiple

controllers in a single domain can create configuration

conflicts.

B. Control-data plane intelligence trade-off

There are recommendations by the researchers [4] to

delegate the decision making of the controller partially to the

switches to overcome the issues due to latency in switch-

controller communication, partial controller unresponsiveness

due to load etc. This adds further complexity to maintain

control plane states, discover and avoid security loopholes and

mitigate delayed response. Nevertheless, it can help mitigate

issues of latency, availability, fast reactivity and security.

III. EXTENDING OPENFLOW

We propose to relax separation of control operations at the

controller and include following operations in the forwarding

elements:

A. Network Monitoring

Monitoring networks and collecting statistics is just a

repetitive task and this cannot be classified strictly as a control

plane task. If the switch can get to know from the controller

certain parameters regarding what to monitor and what to

store, it can very well perform this task. This will offload

significant load on the controller as well as reduce latency for

controller-switch communications.

1) Message Generation

Similar to PortsStats and FlowStats requests sent by the

controller to request statistics from the switches, a particular

switch, say root of the spanning tree, can send similar packets

to the switches connected in the tree and accumulate statistics.

This can be realized by a general message generator and

processing function on OpenFlow switches.

2) Message Response

Message response is already supported by the switches in

response to controller’s request for statistics. This

functionality can be extended to react to statistics’ request

from other switches.

B. Link Encryption

To prevent man in the middle attack, it is crucial to have

secure connections between the switches. To expedite decision

making for routing flows and thus improve upon controller-

switch communication latency, switches need to share stateful

information. We have described in subsections C and D

below. This requires links to be encrypted. Similar to network

monitoring, link encryption is used here just as a mechanism

and not as a network controlling/managing entity.

C. Flow rules installation based on local heuristics

In switches that support dual stack, traditional protocols

like Open Shortest Path First (OSPF) have been used along

with the SDN controller to improve traffic engineering in

hybrid SDN models [5][6][7]. Therefore, we recommend

having a similar low level heuristic to route flows at the

switch, in case communication with the controller is delayed.

This can utilize the local, real-time data collected by the

network monitoring module about the local vicinity similar to

OSPF Hello messages. Thus, it is more efficient in terms of

spatial and temporal locality for collecting network

monitoring data.

By only sending aggregated statistics to the controller,

there will be lot of reduction in controller load. This will

increase available bandwidth in the controller-switch

communication channel thus enabling better scalability.

D. Network State Sharing

State sharing using east-west bound APIs at the controller

yet again cannot be classified strictly as a control plane task, if

it is implemented as a pull based API rather than push based.

If the switches are able to serve low level network state

available with them, then a controller in a distributed

controller environment can request the stateful information as

and when it requires.

The state information not only includes network statistics

and locally traffic engineered paths as outlined before; it also

includes firewall information, current elephant and ant flows,

processor loads of the various controllers that it was connected

to in the recent past etc. The concerned controller can get this

data from various sources and filter it based on timestamps

IV. CONCLUSION

While assigning control functions at the switches partially

instead of a central remote network controller, we enhance

security and scalability extending OpenFlow. Particularly in

the direction of network monitoring, link encryption, local

decision making and sharing network states the functionality

can be shared by the data plane.

REFERENCES

[1]. McKeown N, Anderson T, Balakrishnan H, Parulkar G,

Peterson L, Rexford J, Shenker S, Turner J. OpenFlow:

enabling innovation in campus networks. ACM

SIGCOMM Computer Communication Review. 2008

Mar 31;38(2):69-74.

[2]. Stallings W. Network security essentials: applications

and standards. Pearson Education India; 2007.

[3]. Ahmad I, Namal S, Ylianttila M, Gurtov A. Security in

software defined networks: A survey. IEEE

Communications Surveys & Tutorials. 2015 Nov

18;17(4):2317-46.

[4]. Wackerly S. OpenFlow Hybrid Mode. InOpen Daylight

Developer Design Forum, Sep 2014.

[5]. Levin D, Canini M, Schmid S, Feldmann A. Incremental

SDN deployment in enterprise networks. InACM

SIGCOMM Computer Communication Review 2013

Aug 12 (Vol. 43, No. 4, pp. 473-474). ACM.

[6]. Hong DK, Ma Y, Banerjee S, Mao ZM. Incremental

deployment of SDN in hybrid enterprise and ISP

networks. InProceedings of the Symposium on SDN

Research 2016 Mar 14 (p. 1). ACM.

[7]. Yash Sinha, Siddharth Bhatia, G S S Chalapati, Virendra

S Shekhawat. MPLS based hybridization in SDN.

Proceedings of 4th IEEE International Symposium on

Software Defined Systems May 2017

	I. Introduction
	II. Issues at CDPI
	A. Controller-switch semantic gap
	B. Control-data plane intelligence trade-off

	III. Extending OpenFlow
	A. Network Monitoring
	1) Message Generation
	2) Message Response

	B. Link Encryption
	C. Flow rules installation based on local heuristics
	D. Network State Sharing
	IV. Conclusion
	References

