
Poster: CRAFTED: Code Reuse Analysis for Trusted and Effective Defense

Ethan Johnson
University of Rochester

Email: ethanjohnson@acm.org

Tianqin Zhao
University of Rochester

Email: tzhao8@ur.rochester.edu

John Criswell
University of Rochester

Email: criswell@cs.rochester.edu

Abstract—Return-oriented programming (ROP) and similar
“code-reuse” attacks have led to intense interest in low-
overhead Control-Flow Integrity (CFI) defenses that detect or
prevent corruption of control data. However, weaker forms
of these defenses have already been broken, and it is unclear
whether stronger variants will continue to repel attacks.

We propose a program analysis infrastructure for au-
tomatically evaluating the efficacy of defenses against code-
reuse attacks. Our design uses static analysis to determine
whether a particular security policy can prevent an attacker
from stitching together the data and control flows necessary
to perform a particular malicious computation.

1. Introduction

Return-oriented programming (ROP) [1] and similar
code-reuse attacks have led to intense interest in defenses
against control-flow hijacking. These defenses are attractive
because they can be applied to existing C/C++ code and
have tolerable overheads (one implementation of Control-
Flow Integrity (CFI) [2] has 16% average overhead). How-
ever, the efficacy of such defenses is in doubt: prior work
shows that some CFI defenses still permit sufficient control-
flow corruption to allow Turing-complete code reuse at-
tacks [3]. Furthermore, even defenses which protect all
control data from corruption e.g., Code Pointer Integrity
(CPI) [4], do not mitigate non-control data attacks [5] which
are not only viable in practice but sufficiently expressive to
permit Turing-complete computation [6].

Control-flow integrity research has, like many subjects
in the security field, fallen into an “arms race.” New de-
fenses are proposed and thought to be sufficient only to
be exploited by a more clever attack later. This pattern is
difficult to transcend because there is no effective evaluation
methodology for these defenses.

We propose an infrastructure, named CRAFTED (Code
Reuse Analysis for Trusted and Effective Defense), that will
automatically evaluate the efficacy of defenses against code-
reuse attacks. Our design uses static analysis to determine
whether a particular security policy can prevent an attacker
from stitching together the data and control flows necessary
to perform a specified malicious computation. Our prototype
utilizes the LLVM compiler infrastructure [7].

2. Principles of Code Reuse Attacks

Defenses such as CFI [8] and CPI [4] seek to prevent
attacks by limiting the order in which instructions within a
program can execute. These defenses force control flow to
enter and exit blocks of code, rather than arbitrarily jump
to any instruction, and to follow a limited set of transitions.
These blocks typically correspond to the program’s basic
blocks - its largest units of straight-line (non-branching)
code - which are constructed during compilation of the
program and linked together by the compiler to form a
control flow graph (CFG) representing the possible paths
that control flow can take. Different defense policies en-
force variously strict over-approximations of the CFG, rang-
ing from “coarse-grained” CFI (which enforces only basic
restrictions, e.g., a return must transfer to an instruction
following a call [9]) to CPI (which completely prevents
deviation from normal control flow [4]).

A code-reuse attack exploits memory corruption to ma-
nipulate the control flow of a program to perform a ma-
licious computation on behalf of an attacker by stringing
together reusable instructions taken from the original code
of a target program; manipulating control flow can be done
by corrupting control data (such as return addresses and
function pointers) [1], [10] and non-control data [6]. An
instruction within a target program is (in general) reusable
if an attacker can manipulate control flow so that the instruc-
tion is executed. An instruction is reusable for a particular
attack if it is generally reusable and data flows are present
in the program so that the result(s) of each step in the
attack can reach the input(s) of the next step(s) without
being overwritten by intervening instructions that are not
of interest to the attacker. Importantly, it is acceptable to
execute irrelevant instructions that happen to be present in
the original code between reusable instructions of interest so
long as they do not interfere with the attacker’s computation.

An effective defense must prevent an attacker from
executing a desired set of instructions in the desired order or
ensure that other instructions within the program overwrite
inputs to the attacker’s instructions before those instructions
can execute. Current methods of evaluating defenses do not
ensure that all code reuse opportunities are blocked, leaving
the door open for attackers to continue to evade defenses
with more sophisticated techniques. In order to truly know
that a defense will thwart a particular attack, an evaluation



Figure 1. CRAFTED Architecture

must account for all potentially reusable instructions and all
possible data-flows between them.

3. CRAFTED Design

To evaluate whether a defense policy will effectively stop
a given attack, CRAFTED must determine all possible ways
to construct a malicious computation using the reusable
instructions within a target program under the execution
ordering and data-flow constraints enforced by the defense.
CRAFTED accepts three inputs: 1) a specification of the
restrictions on reusable code imposed by a defense policy;
2) a template for a malicious computation; and 3) a program
to be attacked. A malicious computation must satisfy con-
straints on data and control flow to perform its desired task.
Static analysis can determine whether it is possible for any
sequence of reusable code to satisfy these constraints. If it
is not, then the defense is effective in preventing this attack;
if it is, CRAFTED can demonstrate this by identifying
the specific sequences of reusable instructions that could
potentially permit the malicious computation.

CRAFTED consists of three main components. The
Code Reuse Analyzer performs static analysis on the ma-
chine code of a program to identify the set of all potentially
reusable instructions permitted by a defense policy. The In-
struction Mapper identifies sequences of reusable instruc-
tions which provide the necessary data-flows that connect
together the inputs and outputs of instructions needed by the
attack. The Control Flow Verifier checks whether identified
instruction sequences will be permitted to execute under the
control flow restrictions of a defense policy. Figure 1 depicts
the general structure of CRAFTED and its dependencies on
LLVM components.

3.1. Code Reuse Analyzer

To identify reusable instructions, we start with the local
(intra-procedural) control flow graph (CFG) of the target

program, which is explicit in LLVM’s in-memory repre-
sentation of its machine code [11]. Local control flow is
static (hard-coded by the compiler) and not manipulable
by an attacker. We then extend this into an augmented
global CFG which reflects all possible control-flow transfers
between functions that are permitted by the defense policy.
In the most basic case - a defense policy which permits
no control flow corruption whatsoever (such as CPI [4]) -
the augmented CFG will be the same as the normal global
CFG that would be computed by the compiler, reflecting all
paths that can be taken under benign execution (or some
reasonable over-approximation thereof, depending on the
precision of available static analyses). Under policies that
allow some (usually limited) control flow corruption (such
as CFI [8]), the augmented CFG will have additional edges
representing the full flexibility permitted the attacker. The
augmented CFG may have multiple entry points, reflecting
the attacker’s options at the point of attack. The set of
reusable instructions available to the attacker consists of all
instructions which are reachable from any entry point in this
augmented CFG.

3.2. Instruction Mapper

Using the augmented CFG constructed by the Code
Reuse Analyzer, CRAFTED performs an iterative “may-
reach” data flow analysis [12] to compute the set of all
definitions that may reach each input of each reusable
instruction. This allows CRAFTED to determine whether
reusable instructions can be “strung together” to perform
sequential steps of a larger computation. The malicious com-
putation template provided as input to CRAFTED specifies
the data-flow constraints required to perform the attacker’s
computation. Using the reaching-definitions analysis results,
CRAFTED builds all possible chains of reusable instructions
which satisfy the attack’s data-flow constraints. From these,
it generates all possible execution sequences of reusable
instructions that respect the attack’s data-flow.

3.3. Control Flow Verifier

To determine if it is possible to execute the instruction
sequences identified by the Instruction Mapper without vio-
lating the control-flow restrictions of the defense policy, we
construct a context-free grammar1 based on the augmented
CFG and use a parser generator to create a verifier that
checks whether a given sequence of instructions respects
its constraints. CRAFTED uses the verifier to check each
instruction sequence to determine which (if any) of the
sequences will be permitted to execute under the policy.
Any sequences that survive this check represent a potential
code-reuse attack that will succeed despite the enforcement
of this defense policy. Conversely, if no instruction sequence
can be found that satisfies all the constraints of the attack
template and defense policy, CRAFTED concludes that this
policy effectively stops the attack.

1. Both “control-flow graph” and “context-free grammar” are commonly
abbreviated “CFG.” We use “CFG” to abbreviate “control-flow graph.”



References

[1] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-
oriented programming: Systems, languages, and applications,” ACM
Transactions on Information Systems Security, vol. 15, no. 1, pp. 2:1–
2:34, Mar. 2012.

[2] M. Abadi, M. Budiu, Úlfar Erlingsson, and J. Ligatti, “Control-flow
integrity,” in CCS ’05: Proceedings of the 12th ACM conference on
Computer and communications security. New York, NY, USA: ACM,
2005, pp. 340–353.

[3] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
“Control-flow bending: On the effectiveness of control-flow integrity,”
in USENIX Security, vol. 14, 2015, pp. 28–38.

[4] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar,
and D. Song, “Code-pointer integrity,” in Proceedings of the
11th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’14. Berkeley, CA, USA: USENIX
Association, 2014, pp. 147–163. [Online]. Available: http://dl.acm.
org/citation.cfm?id=2685048.2685061

[5] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-
control-data attacks are realistic threats,” in 14th USENIX Security
Symposium, August 2004, pp. 177–192.

[6] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control
data attacks,” in Security and Privacy (SP), 2016 IEEE Symposium
on. IEEE, 2016, pp. 969–986.

[7] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis and transformation,” in Proceedings of the
Conference on Code Generation and Optimization, San Jose, CA,
USA, Mar 2004, pp. 75–88.

[8] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Trans-
actions on Information Systems Security, vol. 13, pp. 4:1–4:40,
November 2009.

[9] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete control-
flow integrity for commodity operating system kernels,” in Proceed-
ings of the Thirty-Fifth IEEE Symposium on Security and Privacy,
May 2014.

[10] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and
P. Ning, “On the expressiveness of return-into-libc attacks,” in
Proceedings of the 14th International Conference on Recent
Advances in Intrusion Detection, ser. RAID’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 121–141. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-23644-0 7

[11] “The LLVM Target-Independent Code Generator,”
http://llvm.org/docs/CodeGenerator.html.

[12] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1999.

http://dl.acm.org/citation.cfm?id=2685048.2685061
http://dl.acm.org/citation.cfm?id=2685048.2685061
http://dx.doi.org/10.1007/978-3-642-23644-0_7
http://dx.doi.org/10.1007/978-3-642-23644-0_7

	Introduction
	Principles of Code Reuse Attacks
	CRAFTED Design
	Code Reuse Analyzer
	Instruction Mapper
	Control Flow Verifier

	References

