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Abstract—Our work focuses on detecting reactive jamming
attacks in a WiFi (802.11x) infrastructure wireless local area
networks (WLANs) using the principal component analysis
(PCA) based statistical anomaly detection algorithm. Simulations
using the ns-3 network simulator are performed to evaluate the
detection effectiveness. Simulation results demonstrate that the
PCA-based approach can effectively identify reactive jamming
attacks even when the reactive jamming activity is extremely
stealthy, and its detection accuracy is superior to a previous
approach. We also propose a novel variant on PCA, called
cautious PCA, enabling an anomaly detector to self-assess the
reliability of its estimated labels.

I. INTRODUCTION

Denial of service (DoS) attack is one of the biggest threats
against the normal operation of wireless networks. Reactive
jamming is a type of DoS attack that can disrupt legitimate
wireless communications, and is known for its detection
difficulty, compared with other wireless jamming attacks (e.g.,
constant or random jamming) [1]. We study the performance of
a statistical anomaly detection (SAD) method to detect reactive
jamming in a 802.11g wireless local area network (WLAN).

Malicious attacks might change the correlation between
various network features, such as the signal strength, packet
counts, etc., and might be difficult to be detected by a
simple thresholding technique of individual features. Prin-
cipal component analysis (PCA) is superior to thresholding
in that it utilizes feature correlation to identify anomalies,
which are defined as events that deviate significantly from the
normal patterns of network events. PCA-based SAD has been
widely applied in detecting network-wide volume anomalies
on (wired) network backbone links (e.g., [2]). The main idea
of PCA is to learn a lower dimensional subspace, called the
principal subspace, which captures most of the variance of a
dataset, as the normal profile. Samples with large distances
from the principal subspace are labeled as anomalies.

The WLAN consists of a single access point (AP), a single
reactive jammer (RJ) and nine stationary wireless stations
(STAs), illustrated in Fig. 1. The behavior of a RJ (Fig. 2),
is defined by the triple (pJ , τ, T ): it persistently listens to the
wireless channel and, upon detection of a target transmission
from a legitimate STA, decides with probability pJ to jam the
transmission for duration T after an initial reaction time τ .
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II. MODEL

Consider an 802.11g WLAN in infrastructure mode. The AP
acts as the anomaly detector, which monitors m stations and
p distinct statistics (i.e., features) at each station. We fix p = 5
features: 1) the number of successfully received packets, 2)
the total number of dropped packets, 3) the number of dropped
packets due to corruption (i.e., packets that fail the CRC check,
possibly on account of a collision), 4) the maximum duration
between two consecutive successfully received packets [3],
and 5) the average received signal strength (RSS) of dropped
packets due to corruption. Therefore, for a network with m
wireless stations, each sample has n ≡ pm = 5m features.
Let xji be the length-p measurement vector of station j at
time ti and let xi = (xji , j ∈ [m]) ∈ Rn be the concatenation
of the m station measurements at time ti.

Our approach is semi-supervised, meaning only normal
(non-jamming) samples are needed to train the anomaly de-
tector. After N time instants (t1, ..., tN ), the AP can form
a matrix X ∈ RN×n comprised of the N points (rows)
X = (x1, ..., xN ). Assuming that X contains only clean
samples, we can use X for training, and subtract the mean.
The PCA-based anomaly detector learns the sample covariance
matrix S ≡ 1

NX
ᵀX , and then performs eigen-decomposition

S = V̂ Λ̂V̂ ᵀ, where the columns of V̂ are the sample
eigenvectors, and the diagonal matrix Λ̂ holds the eigenval-
ues, sorted in order of decreasing magnitude. The sample
principal subspace Ŝ of dimension k ≤ n is defined by
the leading k sample eigenvectors V̂ (k). PCA-based SAD is
established on the assumption that normal patterns mainly lie
in the principal subspace [2]. We use the sample Q-statistic,
defined as the squared Euclidean distance to the principal
subspace, to measure the abnormality of a sample x ∈ Rn:
QŜ(x) ≡

∥∥x−ΠŜ(x)
∥∥2, where ΠŜ ≡ V̂ (k)V̂ (k)ᵀx is the

projection of x onto Ŝ. Fixing a threshold q > 0, x is labeled
normal if QŜ ≤ q or labeled anomalous if QŜ > q.

A. Cautious PCA

Since the sample principal subspace Ŝ is learned from S,
which is an estimate of the population covariance matrix, it
might not accurately capture the normal patterns, i.e., anoma-
lies detected using Ŝ might not be true anomalies. Thus we
propose a simple cautious PCA scheme wherein the anomaly



detector only assigns “certain” labels to points with distance√
QŜ(x) not within ε

√
q of

√
q, for a parameter ε > 0 set

by the detector. Points with distance |
√
QŜ(x)−√q| ≤ ε√q

are “uncertain” in the sense that the possibility of mislabeling
such points, which are close to the PCA thresholding surface,
is high. Cautious PCA thus assigns one of three labels to
each point: i) (certain) normal if

∥∥x−ΠŜ(x)
∥∥2 ≤ (1− ε)2q,

ii) (certain) abnormal if
∥∥x−ΠŜ(x)

∥∥2 > (1 − ε)2q, or iii)
uncertain if (1− ε)2q <

∥∥x−ΠŜ(x)
∥∥2 ≤ (1 + ε)2q.
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Fig. 1: WLAN topology.
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Fig. 2: Flowchart of the RJ.

III. EXPERIMENTS

Simulations are performed using the ns-3 (version 3.21).
The reactive jamming behavior is developed based upon the
wireless jamming model [4] with two important modifications:
i) instead of jamming all wireless stations, a RJ can be con-
figured to only target a specific station or a set of stations, and
ii) the RJ will ignore control frames (e.g., acknowledgements)
and only jam data frames.1 Simulation parameters are listed
in Table I. By scaling the separation distance Rmax between
the STAs and keeping the transmission power constant, we
effectively “scale” the likelihood of hidden terminals and
thereby change the difficulty of accurate anomaly detection.
Each simulation runs for 1000 seconds and the AP aggregates
statistics for every STA over a time bin of 2s. Due to space
limitation, this abstract only shows the case of RJ without
a specific target. Fig. 3 shows the false alarm rate (FAR)
and true positive rate (TPR) tradeoffs with respect to various
jamming probabilities pJ when Rmax = 63. With pJ = 0.05,
we can correctly detect 98.57% of jamming instances at a FAR
of only 0.6%. When pJ ≥ 0.2, it reaches 100% detection
rate without incurring any false alarms. When Rmax = 63,
there are more hidden-terminal pairs compared with the case
when Rmax = 44 or less. For example, STA1 and STA8 are
hidden terminals when Rmax = 63, but they are not when
Rmax = 44. We also compare the efficacy of our anomaly
detector with the PDRRSS Detect Jam algorithm proposed
by Xu et al. in [1]. Fig. 4 shows that the PCA-based anomaly
detector significantly outperforms their method in terms of
detection accuracy, especially when the jamming activity is
not aggressive.

1The RJ might alternatively focus on jamming certain control messages
(e.g., ARPs, beacons, etc.), which can significantly degrade the channel
throughputs and disrupt data transmissions [5].

We also propose three metrics to quantify the effectiveness
of a RJ: i) η(1)J (ts, tf ) is the fraction of time over [ts, tf ]
that the RJ transmitted while a legitimate station transmitted;
ii) η

(2)
J (ts, tf ) is time the RJ and a legitimate station trans-

mitted over the time that a legitimate station transmitted; iii)
η
(3)
J (ts, tf ) is time the RJ and a legitimate station transmitted

over the time that the RJ transmitted. Notice that the value of
η
(1)
J first increases then decreases as T grows in Fig. 5. The

reason is that increasing T by a reasonable amount increases
the chance of collision, however the transmission of reactive
jammer occupies the channel when T becomes excessively
large and prevent legitimates STAs from transmitting.

Parameter Value
Physical Data rate 24 Mbps
Propagation model Log-distance path loss model
Transmission power 0.04 Watts (16.0206 dBm)
Energy detection threshold -83 dBm
Cca mode 1 threshold -86 dBm
Traffic type Constant bit rate (CBR)
Rate (per station) 1.5 Mbps
Packet size 1024 Bytes

TABLE I: Simulation parameters
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Fig. 5: Scaled η(i)J vs. T (Rmax = 44,, pJ = 0.5, τ = 50).
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