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Abstract—SQL Injection continues to be one of the most
damaging security exploits in terms of personal information
exposure as well monetary loss. Injection attacks are the
number one vulnerability in the most recent OWASP Top
10 report, and the number of these attacks is continuing to
increase. Traditional defense strategies often involve static,
signature-based IPS (Intrusion Prevention Systems) rules, which
are effective primarily against previously observed attacks
but not against unknown, or zero-day, attacks. Most current
strategies involve collection of traffic coming into the web
application either from a network device or from the web
application host. Other strategies collect data from the database
server logs. In this project, we collect traffic from two points:
at the web application host, and at a Datiphy appliance node
located between the webapp host and the associated MySQL
database server. We then use machine learning techniques to
analyze these two datasets, and another dataset that is correlated
between the two. We have been able to demonstrate in the initial
results an increase in accuracy with analysis of the correlated
dataset.
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I. INTRODUCTION

Web attacks such as SQL Injection have been around for
decades, yet they continue to be a relevant and increasingly
damaging cause of exposure of personal data as well as
negative financial impact to business and governmental en-
tities. This is true in particular as old attacks are modified
and evolved, and new attack vectors continue to appear [1].
Industry and security firms devote a great deal of resources
to mitigation of web attacks, and many present mitigation
strategies have limitations that current research is continually
striving to overcome [2].

An SQL injection detection strategy that is a current topic
of research involves the use of machine learning techniques
[3][8]. Popular techniques in this research are decision trees,
rule-based learning techniques, and neural networks. A pri-
mary advantage of these techniques is that they are capable
of detecting new attacks [3]. These techniques and others rely
on the availability of good data.

Much current research uses web traffic captured coming in
to the web application, or uses logs from the web application
and/or web server. The strategy that we are proposing uses
traffic captured inbound to the web application in combination

with traffic captured between the web application and the
associated database server.

II. SYSTEM DESIGN AND IMPLEMENTATION

The approach that proposed in this paper uses machine
learning techniques to classify incoming traffic as either nor-
mal or malicious. The system consists of a custom enterprise
chat web application with a remote MySQL server backend.
Data is captured in two places: we captured both HTTP traffic
between the traffic generation server and the webapp server,
and the resulting MySQL traffic between the webapp server
and the remote database server. The resulting data is compared
and correlated for increased accuracy. Machine learning is
done using the Weka Machine Learning Framework [7].

A. Architecture

The architecture, referring to Fig. 1, consists of four server
nodes, which are KVM virtual machines running on an HP
server with dual quad-core processors and 64G of RAM.
These nodes are: a webapp server, a traffic generation server,
a database server, and a Datiphy MySQL data capture node.
These are discussed briefly below.

Fig. 1. Architecture

1) Web Application Server: The webapp server is running
Ubuntu 14.04, with the custom web application installed in
the webspace. This webapp has a MySQL backend located on
the database server. This server is also running Snort for data
capture and is one of the two points of data capture.



2) Traffic Generation Server: This server is used to gen-
erate both normal and malicious traffic, and is running the
Kali Linux distribution. The normal and malicious traffic is
generated with Python/shell scripts using the Beautiful Soup
Python libraries [4]. This traffic consists of writes to the
custom webapp, and these are done via HTTP POST methods.

3) Database Server: This server is also running Ubuntu
14.04 server version, and the database used is MySQL. It is set
up for remote access to the database from the chat application
on the webapp server, and all MySQL traffic for the webapp
occurs between these two servers.

4) Datiphy MySQL Data Capture Server: This server con-
sists of a Datiphy appliance VM provided for research by
Datiphy Inc. [5]. This appliance allows for visibility of SQL
traffic, among other types of database traffic. Traffic between
the webapp and the MySQL database server is routed through
the Datiphy appliance, thus allowing for visibility of all traffic
in the Datiphy web interface. Once traffic has been generated,
a report is created and used as the basis for what we call the
Datiphy traffic in the following sections.

B. Process of Data Generation
The data generation process consists of three phases: traffic

generation, capture, and processing. These are briefly dis-
cussed below.

1) Traffic Generation: The simulated normal and malicious
traffic for our project is generated from the scripts located
on the Kali Linux server as discussed previously. This traffic
consists of HTTP POST requests from this server to the chat
webapp, which then generates MySQL traffic between the
webapp server and the database server. Normal traffic consists
of simulated normal interaction with the chat web application,
and malicious traffic differs in the inclusion of manually coded
SQL injection attacks.

2) Traffic Capture: The traffic is captured at two points,
at the webapp server, and at the Datiphy appliance. At the
webapp server, we are capturing traffic using the Snort IDS
tool [6]. The MySQL traffic resulting from the interaction be-
tween the webapp and the remote MySQL server is captured,
as discussed, at the Datiphy appliance node. A report of this
traffic is generated and saved in CSV format.

3) Data processing: Data processing for the webapp traffic
consists of using TShark to process the pcap file generated
by Snort; this is done by selecting the desired fields and
processing these into a CSV file. The CSV file is then cleaned
up with bash shell scripts for further processing. The data
captured from the Datiphy appliance is also processed with
shell scripts. In the final stage, these two datasets are processed
into one file with shell scripts to create the correlated dataset.
Once imported into Weka the numerical and nominal data is
used as it is, and the string data is further processed into word
vectors. In this phase we perform feature selection with the
Correlation Feature Selection (CFS) algorithm.

C. Machine Learning
Our analysis of the processed data is done with Weka, which

is a Machine Learning (ML) framework that includes many

current ML techniques. We are currently using the J48 rule-
based algorithm, the JRip rule-based algorithm; a later version
will include Naive Bayes and Artificial Neural Networks
(ANN) techniques. The results obtained are presented below.

III. EXPERIMENT AND RESULTS

A. Datasets

The datasets consist of normal and malicious traffic originat-
ing from the traffic generation server, and collected from both
the web application server and the Datiphy appliance server. A
third dataset is created from correlating and combining these
two datasets. For the initial results the dataset consists of 1600
entries, 800 normal traffic and 800 malicious traffic. Certain
features are unique to each of the datasets. The webapp dataset
includes features of the incoming packets such as TCP and
HTTP length. The Datiphy dataset includes information about
the SQL statement, and also includes features related to the
SQL Response and Result.

B. Preliminary Results

1) Results: Preliminary results are summarized in TABLE
I.

TABLE I
PRELIMINARY RESULTS

Dataset Algorithm Accuracy
Webapp JRip 84.375%

J48 87.188%

Datiphy JRip 82.375%

J48 84.938%

Correlated JRip 98.438%

J48 98.688%

C. Analysis

An intuitive understanding of this process would suggest
that as there is more data available from the correlated
dataset, as it is a combination of two datasets, the results
obtained would be better in terms of classification accuracy.
In our experiments so far this has been the case with JRip
for example using features from both datasets in generating
rules. An example rule from the correlated dataset includes
both http.content length from the webapp dataset, and SQL
Statement length and Result length from the Datiphy dataset.

IV. CONCLUSION

SQL injection attacks, and web-based attacks in general,
continue to be a major issue in the security of financial, health,
and other important data. This problem only increases in
importance as a growing number of societal processes become
more dependent on the Internet [1]. In this project we have
proposed a multi-source data analysis system for increased
accuracy in detection of SQL injection attacks. Future works
include adapting this system to detect other types of web-based
attacks, as well as analysis of additional machine learning
techniques for both accuracy and performance.
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