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Abstract—The Tor anonymity system provides online privacy
for millions of users, but it is slower than typical web browsing.
To improve performance in Tor, we propose PredicTor, a path
selection technique that uses a kNN classifier trained on a set of
125,000 simulated Tor paths in order to predict the performance
of a proposed path. If the path is predicted to be fast, then a
circuit is built using those relays. We implemented PredicTor in
the Tor source code and show through simulations in Shadow that
PredicTor improves Tor network performance by 29% compared
to Vanilla Tor and by 21% compared to the previous state-of-
the-art scheme.

Index Terms—Tor, Anonymous Communications

I. INTRODUCTION

Tor is a low-latency anonymity system designed for TCP-
based applications [1]. The Tor network comprises approxi-
mately 7000 relays [2] that are deployed throughout the world
by volunteer operators. It was recently shown by Jansen et
al. [3] that Tor has approximately 550,000 active users at
any given time. Each user’s Tor client selects a path of three
relays and builds a circuit over them to pass anonymized traffic
back and forth. In the circuit, the first, middle, and last hops
are called guard, middle, and exit relays respectively. Circuits
are built based on the onion routing protocol, where clients
negotiate session keys incrementally with each successive hop
in the path until the final hop is reached.

Relays are selected for paths such that traffic is evenly
distributed over the available relay bandwidth. To enable this,
each client receives hourly a consensus document from the
directory servers containing bandwidth weights for all relays.
Based on this information, the client uses the consensus
bandwidth weights to calculate weights for the relays. Finally,
the client uses the calculated weights to select the relays,
which ensures load balancing but does not ensure fast circuits.

Related Work. Tor is slower than typical web browsing, and
a number of research groups have attempted to address this.
Wacek et al. [4] examined multiple approaches and determined
that Congestion-Aware Routing (CAR) [5] offered the best
performance-anonymity trade-off. In this paper, we thus use
CAR as as a benchmark for comparison.

II. PATH CLASSIFICATION

Our goal is to classify potential Tor circuits into two
classes—fast and slow. To do this, we first ran a Tor network
simulation with 1000 clients using Shadow [6], a discrete
event simulator that runs the Tor source code. We generated a
training set of 125,000 streams, where each stream consisted
of a client downloading a file from a server through a circuit.
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Fig. 1. Accuracy of machine learning algorithms in predicting circuit
performance with All features compared to AS, CC, and BW features only.

We label each stream based on the time-to-last-byte (TTLB)
download time that was measured from the client during the
simulation. For all streams in the training set, the median
TTLB value was 1.8s. Therefore, we set a threshold parameter
τ = 1.8s; the label for a given stream was then set to 0 or 1,
if τ < 1.8s and τ ≥ 1.8s respectively.

In Tor circuits, there is a relationship between download
times and consensus bandwidth of each relay, as well as
between download times and network location of each relay.
Due to these relationship, we believe that a recognizable
pattern exists such that download times can be predicted (to
some degree) by inspecting bandwidth and network location
of each relay in a circuit. As such, we resolve each relay into
three features: 1) Autonomous System (AS), 2) Country Code
(CC), and 3) Consensus Bandwidth (BW). Our feature set F
then consists of nine features, three for each of the three relays.

To perform the classification of circuits into either the fast
class 0 or the slow class 1, we used distance-weighted k-NN
with k = 9, Gaussian Naive Bayes, Support Vector Machine
(SVM) with a 3rd degree polynomial kernel, and Random
Forests.

Figure 1 shows the accuracy of these machine learning
algorithms in predicting circuit performance using All features
compared to AS features, CC features, and BW features alone.
The results indicate that k-NN and Random Forests perform
better than SVM and Naive Bayes. The best classification
accuracy was 78% using either k-NN or Random Forests
when All features were used. Using just BW features led to
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Fig. 2. Fast and slow circuits with respect to their guard vs. exit consensus
bandwidth weights.

an accuracy that was almost as high when compared to All
features; the importance of bandwidth in path selection was
previously demonstrated by Wacek et al. [4]. When country
code features were used, the accuracy for k-NN and Random
Forests was 64% and 66%, respectively. One surprising result
was that the accuracy of k-NN and Random Forests was quite
high for AS features, as good as that of BW features. This may
be because some ASes have either high-bandwidth relays (e.g.
a server provider like OVH) or low-bandwidth relays (e.g.
consumer ISPs). It may also show that some ASes are too
remote or poorly connected to the rest of the Tor network to
be of much use for fast circuits.

Visualizing The Data. In Figure 2, we plot fast and slow
circuits with respect to their guard vs. exit consensus band-
width weights. This data helps us visualize the fact that it
is difficult to draw one decision boundary in 2D space that
would separate the data well. This helps to explain why k-
NN and Random Forests outperformed SVM. Additionally,
another advantage of k-NN over SVM is the fact that SVM
must be trained on a much larger training set to have high
accuracy. In a real deployment, however, large training sets
would result in a longer wait time for clients to receive their
updated classification model. Additionally, large training sets
would result in a larger consensus file.

III. PREDICTOR

We now describe PredicTor, a system that applies path
performance classification to speed up circuit selection in Tor.
In PredicTor, the guard selection policy is identical to Vanilla
Tor; clients use a single guard selected randomly using the
consensus bandwidth weights [7]. Middle and exit relays are
first selected according to consensus bandwidth weights as per
the standard Tor protocol, and the result path of three relays
is then classified by one of the models described in Section II.
If the performance of the proposed circuit is predicted to be
fast (class 0), the circuit is built. Otherwise, new middle and
exit relays are selected, and this is repeated until a fast circuit
is found.

IV. RESULTS

We implemented PredicTor in the Tor source code and tested
performance in a scaled-down Tor network using Shadow.
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Fig. 3. Time to first byte
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Fig. 4. Time to last byte

We note that even though each client is making its own
classification decisions about circuits, the Shadow simulations
are network-wide, incorporating activity from 1000 clients
all using PredicTor. For the classification model, we used a
distance weighted k-NN with k = 9 and All features.

Figures 3 and 4 show time-to-first-byte (TTFB) and time-to-
last-byte (TTLB) values, respectively, for PredicTor compared
to congestion-aware routing (CAR) and Vanilla Tor. In the
median case, PredicTor had a 22% improvement in TTFB
compared to Vanilla Tor and an 11% improvement compared
to CAR. For TTLB, Predictor had a median 29% improvement
compared to Vanilla Tor, and a 21% improvement compared
to CAR. This resulted in PredicTor downloading files in the
median case 0.5s and 0.4s faster compared to Vanilla and
CAR, respectively, and for the 90th percentile, 2.5s and 1.1s
faster compared to Vanilla and CAR, respectively.

V. CONCLUSION

Our results indicate that PredicTor significantly improves
network performance in Tor. In future work, we plan on
measuring the anonymity of PredicTor, evaluating it with
different threshold values τ , and combining PredicTor with
a recently proposed AS-Aware path selection scheme called
DeNASA [8] and show how the combination improves both
AS-awareness and performance in Tor. This material is based
upon work supported by the National Science Foundation
under Grant No. 1423139.
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