
Poster: (SF)2I - Structure Field Software Fault Isolation

Spyridoula Gravani, Zhuojia Shen, John Criswell
Department of Computer Science, University of Rochester

Email: {sgravani, zshen10, criswell}@cs.rochester.edu

Abstract—Commodity operating systems are self-extending,
loading code at runtime to add new features. While useful, such
self-extensibility allows attackers to inject kernel-level malware
into the operating system kernel. Such malware threatens
security system-wide and is not yet completely mitigated. This
poster demonstrates our approach to provide safe extensibility
of commodity operating system kernels.

1. Introduction

Commodity operating systems employ monolithic de-
signs in which the entire operating system kernel executes
in the processor’s privileged mode [1], [2], [3], [4]. To
increase flexibility, operating systems can dynamically load
executable modules at runtime in order to enhance their
functionality [5]. Self-extensibility allows an operating sys-
tem to tailor itself to a specific hardware configuration
without restarting the system. However, it also poses a
security threat since it allows attackers to load malicious
code (malware) into the operating system kernel.

Once kernel-level malware infects the operating system
kernel, it executes as part of the operating system in the
processor’s privileged mode. As part of the operating system
kernel, this malware can corrupt kernel data structures to
hide processes, files, and network connections [5] to keep
itself invisible from administrators. It can also corrupt, steal,
and delete application data as well as deny operating system
services to legitimate applications.

We propose the use of virtual instruction set computing
to address the safe extensibility of operating systems. Our
system is based on Secure Virtual Architecture [6], a virtual
instruction set infrastructure that enables the use of sophis-
ticated program analysis techniques and transformations on
operating system kernel code. Our approach consists of two
major steps: 1) security policy generation for an operating
system kernel, and 2) kernel code instrumentation to enforce
the security policy at runtime.

2. Background

As Figure 1 shows, Secure Virtual Architecture (SVA)
is a compiler-based virtual machine in which user-space
programs and the operating system kernel are compiled to
a virtual instruction set that is derived from the LLVM
Intermediate Representation [7]. In SVA-based systems,

Applications

OS Kernel

SVA VM

Processor

Virtual Instruction Set

Native Instruction Set

Figure 1: Secure Virtual Architecture

software is shipped as virtual instruction set code. The SVA
Virtual Machine instruments code on site to enforce security
policies and then translates code to the processor’s native
instruction set for execution.

3. Design

We attack kernel-level malware using SVA. SVA can
add run-time checks to kernel modules before loading them
into the operating system kernel; our goal is to design and
implement run-time checks that restrict to which structure
field each kernel module can read and write. By limiting
the structure fields which a kernel module can access, we
limit the damage that misbehaving code can cause. For
example, we can prevent modules from unlinking processes
from the list of active processes [5] or changing a process’s
scheduling priority.

Our approach consists of two main steps: policy creation
and policy enforcement. Operating systems are comprised
of cooperating subsystems [3]; creating policies for each
structure field that dictate which kernel modules can access
that field can be tedious. We propose to classify kernel
modules into categories based on their functionality and to
instrument operating system kernel code so that it records
information about memory accesses during execution. By
collecting this information on trusted kernel code, we can
automatically extract policies that can be applied to new
kernel modules loaded at run-time.

Once a policy has been generated, we will instrument
kernel code with run-time checks to enforce the policy,
providing dynamic protection against kernel-level malware.

4. Preliminary Work

We have built an automatic access control policy in-
ference mechanism. We developed a compiler pass that



inserts code into a user-space program that traces the loads
and stores performed, compresses the traces, and extracts
the access control policies. The inference mechanism will
require minor extensions to support kernel code.

4.1. Tracing

We extended the SAFECode compiler [8] to instrument
loads and stores to record the following metadata for each
memory access: 1) the offset from the beginning of the
memory object that is accessed, 2) the size of the memory
access in bytes, 3) the name of the module performing the
memory access, and 4) whether the access reads or writes
the memory object. An application compiled with this en-
hanced compiler records this information during execution.

4.2. Policy Coalescing

Execution traces are large; our tools need to compact the
policy generated from a trace. We observe that many fields
in a memory object have a similar access pattern. We have
developed a utility that coalesces the generated trace into a
set of formulas that represent fields within memory objects
with the same access pattern. For every memory object, we
identify groups of accesses with: 1) the same access size,
2) the same access type (read or write), 3) the same module
ID, and 4) the same last decimal digit of the offset in the
memory object. We place these accesses into an equivalence
class and create a 5-tuple of constants that represents all the
memory accesses in the equivalence class.

Let S be a list of memory accesses to the same memory
object that we wish to put into an equivalence class; let b
denote the last decimal digit of these memory accesses. We
sort the memory accesses in S by increasing offset from
the beginning of the memory object. Let c be the smallest
offset and d be the largest offset from the beginning of the
memory object for all memory accesses in S. All offsets in
the list can be represented by the formula 2x+b, in which x
is a variable that ranges from c to d with a stride equal to the
difference among contiguous elements in S. If the difference
among contiguous elements in S is not constant, we find the
difference that occurs most frequently and remove accesses
from S until all accesses are the same distance apart.

Figure 2 shows an example of coalescing. We interpret
the line marked in red as follows: module M1 can read any
4-byte field in the farray memory object starting at an
offset generated by the formula 2x+8, where x varies from
0 to 380 with a stride equal to 20. The stride is the difference
among contiguous accesses in the sorted list of offsets that
have 8 as their last decimal digit.

5. Evaluation

To evaluate how well we can compress an obtained trace,
we instrumented the open source tiny/turbo/throttling HTTP
server [9]. We used ApacheBench to retrieve files of varying
size via the loopback interface. The experiment finished in

struct foo {
int k;
int l;

}
struct foo farray[100];

// Access Pattern of Module M1
int i, var;
for (i = 0; i < 100; i++) {

var = farray[i].k;
}

(a) Memory object farray and access pattern of module M1

Offset Element
0 farray[0].k
4 farray[0].l
8 farray[1].k
12 farray[1].l
.. ...
792 farray[99].k
796 farray[99].l

(b) Memory Layout
Trace

farray:0:M1:R

farray:8:M1:R

farray:16:M1:R

…

farray:784:M1:R

farray:792:M1:R

Policy for farray 

(2*x + 0, 0 ≤ x ≤ 380, stride = 20, 4B, M1, R)
(2*x + 2, 15 ≤ x ≤ 395, stride = 20, 4B, M1, R)
(2*x + 4, 10 ≤ x ≤ 390, stride = 20, 4B, M1, R)
(2*x + 6, 5 ≤ x ≤ 385, stride = 20, 4B, M1, R)
(2*x + 8, 0 ≤ x ≤ 380, stride = 20, 4B, M1, R)

(c) Coalescing

Figure 2: Example of Trace Generation and Coalescing

17 minutes; the obtained trace file required 6.6 GB of space.
After coalescing, the security policy size was 338 KB.

We also collected statistics about the trace. Six distinct
modules, i.e. compilation units, in the web server accessed
82 distinct memory objects. Table 1 shows the percentage of
memory objects accessed by 1, 2, 3 and 4 distinct modules,
respectively; no object was accessed by 5 or more modules.
Our results show that most memory objects are accessed
by only one module. If this pattern is common in kernel
code, we can efficiently enforce strong security policies at
runtime by recording the one module that needs access to the
memory object; only a small number of memory objects will
need more sophisticated checks to handle access by multiple
modules.

TABLE 1: Web Server Memory Access Statistics

Number of Modules % of Objects
1 75.61%
2 17.07%
3 6.10%
4 1.22%

6. Future Work and Conclusions

We leverage SVA to make self-extensibility safe for
operating system kernels. Moving forward, we will enhance
our compiler to recognize kernel memory allocators to apply
our approach to kernel code and devise efficient methods of
enforcing our per-memory object access control policies.



References

[1] M. E. Russinovich and D. A. Solomon, Microsoft Windows Internals,
Fourth Edition: Microsoft Windows Server(TM) 2003, Windows XP,
and Windows 2000 (Pro-Developer). Redmond, WA, USA: Microsoft
Press, 2004.

[2] A. Singh, Mac OS X Internals. Addison-Wesley Professional, 2006.

[3] M. K. McKusick, G. V. Neville-Neil, and R. N. M. Watson, The
Design and Implementation of the FreeBSD Operating System, 2nd ed.
Pearson Education, 2015.

[4] D. P. Bovet and M. Cesati, Understanding the LINUX Kernel, 3rd ed.
Sebastopol, CA: O’Reilly, 2006.

[5] J. Kong, Designing BSD Rootkits. San Francisco, CA, USA: No
Starch Press, 2007.

[6] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve, “Secure Virtual
Architecture: A Safe Execution Environment for Commodity Oper-
ating Systems,” in Proceedings of the ACM SIGOPS Symposium on
Operating System Principles, Stevenson, WA, USA, October 2007.

[7] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” in Proceedings of the Confer-
ence on Code Generation and Optimization, San Jose, CA, USA, Mar
2004, pp. 75–88.

[8] D. Dhurjati, S. Kowshik, and V. Adve, “SAFECode: Enforcing alias
analysis for weakly typed languages,” in ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Ottawa,
Canada, June 2006.

[9] J. Poskanze, “thttpd - tiny/turbo/throttling http server,” 2000,
http://www.acme.com/software/thttpd. [Online]. Available: http://www.
acme.com/software/thttpd

http://www.acme.com/software/thttpd
http://www.acme.com/software/thttpd

	Introduction
	Background
	Design
	Preliminary Work
	Tracing
	Policy Coalescing

	Evaluation
	Future Work and Conclusions
	References

