
Poster: Detecting WebInjects
through Live Memory Inspection

Nicola Mariani∗, Andrea Continella∗, Marcello Pogliani∗,
Michele Carminati∗, Federico Maggi∗†, and Stefano Zanero∗

∗Dipartimento di Elettronica, Informazione e Bioingegneria – Politecnico di Milano, Italy
nicola1.mariani@mail.polimi.it, {andrea.continella, marcello.pogliani, michele.carminati, stefano.zanero}@polimi.it

†Trend Micro Inc.
federico maggi@trendmicro.com

Abstract—Information stealing malware—a growing threat,
which provokes billion-dollar losses every year—usually obtains
sensitive information by modifying the content that the user’s
browser renders when visiting specific (e.g., banking) websites.
This poster addresses the problem of detecting when a machine is
infected by such trojans. We propose IRIS, an automatic kernel-
space module that analyzes the memory of the user’s browser
to spot the artifacts of malicious web-injections by means of
a signature matching mechanism. We leverage the signatures
generated by Prometheus, an automatic system that analyzes
information stealing malware by observing the differences that
they produce in the infected DOMs and by generating signatures
of the injection behavior. Preliminary results, conducted against
real-world variants of financial trojans, show that our system can
successfully detect such malware.

I. INTRODUCTION

Despite being a well-known threat, banking trojans have
recently evolved, growing by 16% since Q1 2016 [1]. In 2016
financial malware infected about 2,8 million personal devices:
a 40% increase since 2015 [2]. Such malware uses Man-in-the-
Browser techniques to infect web browsers; they are equipped
with a “WebInject” functionality that, leveraging API hooking
techniques, intercepts all sensitive data in the browser context
and modifies the look of selected web pages on infected hosts.

With Prometheus [3], we introduced an automatic frame-
work for analyzing WebInject-based trojans. Prometheus ob-
serves the differences that trojans produce in an infected
DOM and generates precise signatures of the injection be-
havior. Although our experiments showed the effectiveness
of Prometheus for malware analysis, we did not fully exploit
the generated signatures for detecting banking trojans. Indeed,
detecting widespread classes of malware by looking at their
“generic” effects, instead of focusing on the specific imple-
mentation, already proved its efficacy in other contexts [4].

To overcome this limitation, we propose IRIS, a client-
side kernel-space module to automatically detect Man-in-the-
Browser attacks that result in visible DOM modifications,
independently from the malware implementation. Our sys-
tem analyzes the memory of running browser processes and,
leveraging live memory analysis, reconstructs the DOMs of
the visited web pages to match injection signatures and spot
artifacts of malicious web-injections.

browser
process

process
monitor

PID list
memory
scanner

user space

kernel

signatures

known browsers

URL finder signature matching

callback on process

creation and termination

scan virtual memory

Fig. 1. Architecture of IRIS.

However, signature matching in “raw” memory is not trivial
and it requires to overcome several technical challenges. First,
malware can easily circumvent any detection performed in
the browser context—it infects and controls the browser. For
this reason, we operate at a “lower level” (kernel driver). In
addition, there is a semantic mismatch between the dynamic
DOM objects allocated by the browser and the “raw” and static
memory view that our solution must efficiently analyze.

We implement a prototype of IRIS as a Microsoft Windows
kernel driver, and we evaluate it on two distinct ZeuS and
Citadel samples, analyzing a real, live banking website. We
manually verified these preliminary results, showing that IRIS
is able to detect when a browser is infected.

II. SYSTEM DESIGN AND IMPLEMENTATION

IRIS is composed of two parallel processes (Figure 1): a
process matcher and a memory scanner. The process matcher
holds a list of PIDs belonging to running browser processes:
It is notified whenever a new process is created or deleted,
and, if the process image name belongs to a known browser,
updates the PID list. Periodically, the memory scanner scans
the memory space of each browser process, extracting the
URLs of the pages being visited. If the signature database con-
tains signatures related to the extracted URLs, it invokes the
signature matching module, which scans the process memory
to match its content (i.e., in-memory DOM fragments) with
known signatures. If there is a match, we detect an infection.

Signatures. A signature is a tuple containing (a) a URL, (b) an
XPath expression specifying the location of the injection in the



DOM, and (c) the injected content, which can be a node or an
attribute. Such signatures are URL-specific and are based upon
the effect of the banking trojan on the target web-page rather
than the malware implementation: They can be generated
through automated dynamic analysis (e.g., Prometheus [3]).

Memory Scanner. The memory scanner cyclically iterates
through the running browser processes’ PIDs and gath-
ers the valid (i.e., allocated) virtual memory pages. It
scans the process memory space to determine the memory
state (ZwQueryVirtualMemory). If a page region has state
MEM_COMMIT, it is valid and can be scanned for URLs or
signatures: Through the KeStackAttackProcess routine, IRIS
attaches to the target process memory space and makes a copy
of the memory region to analyze. The copied memory buffer
is passed to the URL finder and signature matching modules.
After that, we move to the next region of addresses in the
target process, repeating this procedure until a region has an
invalid state (STATUS_INVALID_PARAMETER).

URL finder. This module finds the visited URLs in a memory
region belonging to a running browser process. In general
(e.g., Internet Explorer), multiple browser tabs share the same
process: URLs and DOMs are scattered over the process
memory. Hence, we need to perform a preliminary complete
scan of the process memory to gather the relevant URLs.
Instead, the multi-process architecture of some browsers, such
as Google Chrome, has a different rendering process for each
tab (i.e., each visited URL). In this case, we stop the linear
memory scan after identifying the visited URL, performing
signature matching only over the remainder of the process
memory. This is possible because, as experimentally deter-
mined, in the memory address space of each Chrome rendering
process, the URL is in a lower memory address than the DOM.

Signature matching. This module matches a memory buffer
against the signatures targeting the visited URLs in three steps:

1) String search: First of all, it searches for occurrences
of the signature content (i.e., the injected HTML/JS code) in
the memory buffer using the Boyer–Moore algorithm [5]. This
allows to efficiently discard signatures that do not match.

2) Refinement: If there are candidate matches, it refines
the search by checking whether the string found in memory
is part of a valid HTML fragment (e.g., in case of an attribute
injection, the value found in memory should be an attribute
with the same HTML element type described in its signature).
We search the start tag of the element backward in memory,
starting from the matched value; when we find the node, we
use a lightweight HTML parser to validate that the string
ranging from the start tag until the injected value is a valid
HTML element with the type and attribute (or content in case
of text injection) defined by the signature. This phase is not
required when whole HTML fragments are injected.

3) XPath search: Lastly, it checks whether the location of
the match in the DOM is the one specified in the signature’s
XPath expression. We proceed by walking the XPath expres-
sion starting from the node with the injected content and

moving backward to the DOM root, while matching DOM
nodes in the memory dump. We note that, often, the complete
DOM continuously changes, and cannot be retrieved with
a single live memory “snapshot.” Instead of attempting to
reconstruct the DOM correlating multiple memory scans, we
overcome this issue by coping with partial and approximate
matches (e.g., when only fragments of the DOM are available,
or when the DOM is scattered around the memory).

IRIS supports three levels of match: In the best case, it
matches the XPath expression in the signature up to the root
node; on average, it partially matches the XPath expression;
in the worst case, it matches only the signature value. The
user can tune the match level required to trigger a detection
according to the desired trade-off.

III. PRELIMINARY RESULTS

In order to test the correctness of our tool, we performed
an experiment building a custom trojan in a controlled en-
vironment. Specifically, we got access to ZeuS and Citadel’s
builders. Using such tools, we built two samples defining a
list of custom web-injections for a real banking website. We
then manually created the signatures for such injections and
run the samples in a controlled environment (VirtualBox VM
running Windows 7 32 bit) where we previously installed IRIS
(together with our signatures).

As a result, IRIS detected the presence of the trojans when
we visited the targeted web-pages using Internet Explorer,
showing it is able to successfully match such signatures only
looking at the raw memory of the browser.

IV. CONCLUSIONS

Based on the finding of our previous work, which analyzes
trojans equipped with “WebInject” functionalities and gener-
ates signatures of their injection behavior, we presented IRIS,
an automatic kernel-space module that detects banking trojans
by exploiting an in memory signature matching mechanism.
Preliminary results, conducted against two distinct variants of
trojans, show that our system can successfully detect when a
machine is infected with a banking trojan.

Future Work. We plan to extend the evaluation of IRIS on
a large dataset of distinct samples of trojans. In particular,
we want to study how the different matching techniques (full
XPath, partial XPath, content only) affect the performance of
the detection.

REFERENCES

[1] D. Emm, R. Unuchek, M. Garnaeva, A. Ivanov, D. Makrushin, and
F. Sinitsyn, “IT Threat Evolution in Q2 2016,” Kaspersky Lab, Tech.
Rep., Aug 2016. [Online]. Available: https://kas.pr/xE7e

[2] “Kaspersky Security Bulletin 2016,” Kaspersky Lab, Tech. Rep., Dec
2016. [Online]. Available: https://goo.gl/W9dfol

[3] A. Continella, M. Carminati, M. Polino, A. Lanzi, S. Zanero, and
F. Maggi, “Prometheus: Analyzing WebInject-based information stealers,”
Journal of Computer Security, Feb 2017.

[4] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“Accessminer: Using system-centric models for malware protection,” in
Proc. 17th ACM Conf. on Computer and Communications Security. New
York, NY, USA: ACM, 2010.

[5] R. S. Boyer and J. S. Moore, “A Fast String Searching Algorithm,”
Commun. ACM, vol. 20, no. 10, pp. 762–772, Oct 1977.

https://kas.pr/xE7e
https://goo.gl/W9dfol

	Introduction
	System Design and Implementation
	String search
	Refinement
	XPath search


	Preliminary Results
	Conclusions
	References

