
HOnions: Detection and Identification of
Snooping Tor HSDirs

Amirali Sanatinia, Guevara Noubir
College of Computer and Information Science

Northeastern University, Boston, USA
{amirali,noubir}@ccs.neu.edu

Abstract—In the last decade, Tor proved to be a very suc-
cessful and widely popular system to protect users’ anonymity.
However, Tor remains a practical system with a variety of
limitations, some of which were indeed exploited in the recent
past [1]. Tor’s security relies on the fact that a substantial number
of its nodes do not misbehave. In this work, we introduce, the
concept of honey onions, a framework to detect misbehaving
Tor relays with HSDir capability. This allows to obtain lower
bounds on misbehavior among relays. We propose algorithms
to both estimate the number of snooping HSDirs and identify
the most likely snoopers. Our experimental results indicate that
during the period of the study (72 days) at least 110 such
nodes were snooping information about hidden services they host.
We reveal that more than half of them were hosted on cloud
infrastructure and delayed the use of the learned information to
prevent easy traceback. The preliminary results of this work have
been presented [2].

I. HONION GENERATION & DETECTION

We introduce the concept of honey onions (honions),
to expose when a Tor relay with HSDir capability has been
modified to snoop into the hidden services that it currently
hosts. In order to automate the process of generating and
deploying honions in a way that they cover a significant frac-
tion of HSDirs, we developed several tools. A key constraint
in this process was to minimize the number of deployed
honions. This derives primarily from our desire to not impact
the Tor statistics about hidden services (specially given the
recent surge anomaly). By considering the number of HSDirs
(approximately 3000), we could infer that we need to generate
around 1500 honions to cover all HSDirs with 0.95 probability.
We used 1500 honions per batch (daily, weekly, or monthly)
and could verify that 95% of the HSDirs were systematically
covered.

HOnion back end servers: Each honion corresponds to a
process that is running locally. The server behind hidden
services, should not be running on a public IP address, to avoid
de-anonymization. We also log all the requests that are made to
the server programs and the time of each visit. Recording the
content of the requests allows us to investigate the snoopers’
behavior and intent.

HOnions generation and deployment schedule: To keep the
total number of honions small, we decided on three schedules
for their generation and placement, daily, weekly, and monthly.
The three schedules allow us to detect the malicious HSDirs
who visit the honions shortly (less than 24 hours) after
hosting them. Since the HSDirs for hidden services change
periodically, more sophisticated snoopers may wait for a longer

1. Generate honions

ho
i

ho
j

2. Place honions on HSDirs3. Build bipartite graph

On visit, mark potential HSDirs

ho
j

d
i

d
i+2

d
i+1

d
i

d
i+1

d
i+2

On visit, add to bipartite graph

Fig. 1: Flow diagram of the honion system.

duration of time, so they can evade detection and frame other
HSDirs.

Identifying snooping HSDirs: Based on the visited hidden
service, the time of the visit, and the HSDir that have been
hosting the specific onion address prior to the visit, we can
mark the potential malicious and misbehaving HSDirs. Then,
we add the candidates to a bipartite graph, which consists of
edges between HSDirs and the visited honions. The analysis
of this graph allows us to infer a lower bound on the number
of malicious HSDirs as well as specific snoopers. Figure 1
depicts the architecture of the system.

HOnion Visit Graph Formation: In the following we first
introduce a formal model and notation for the Honey Onions
system. First, HO denotes the set of honey onions generated
by the system that were visited, and HSD the set of Tor
relays with the HSDir flag (so far referred to as HSDir relays).
The visits of honions allow us to build a graph G = (V,E)
whose vertices are the union of HO and HSD and edges
connect a honion hoj and HSDir di iff hoj was placed on
di and subsequently experienced a visit. G is by construction
a bipartite graph. We also note that each honion periodically
changes descriptors and therefore HSDirs (approximately once
a day). However, a HSDir currently a honion ho cannot explain
visits during past days. Therefore, each time a honion changes
HSDirs we clone its vertex ho to ho′ and only add edges
between ho′ and the HSDirs who know about its existence
when the visit happened.

Estimation & Set Cover: Since each honion is simultaneously
placed on multiple HSDirs, the problem of identifying which
ones are malicious is not trivial. We first formulate the problem
of deriving a lower-bound on their number by finding the
smallest subset S of HSD that can explain all the visits. The
size s of the minimal set tells us that there cannot be less than
s malicious HSDirs who would explain the visits.

(a) Daily Visits (b) All Visits

Fig. 2: Plot of the visits to the honions.

argmin
S⊆HSD

|S : ∀(hoj , di) ∈ E∃d′i ∈ S ∧ (hoj , d
′
i) ∈ E| (1)

Finding the smallest set S as defined by Equation 1, is not
trivial as one can easily see that it is equivalent to the hitting
set problem, which itself is equivalent to the set cover problem,
which is well known to be NP-Complete. However, it can also
be formulated as an Integer Linear Program. Let x1≤j≤|HSD|
be binary variables taking values 0 or 1. Solving Equation 1,
consists of finding integer assignments to the xj such that:

min(x1,...,xHSD)

∑|HSD|
j=1 xj

subject to ∀hoi ∈ HO
∑
∀j:(hoi,dj)∈E xj ≥ 1

II. RESULTS & DISCUSSION

We started the daily honions on Feb 12, 2016; the weekly
and monthly experiments on February 21, 2016, which lasted
until April 24, 2016. During this period there were three spikes
in the number of hidden services, with one spike more than
tripling the average number of hidden services. There are some
theories suggesting that this was due to botnets, ransomware,
or the success of the anonymous chat service, called Ricochet.
However, none of these explanations can definitely justify the
current number of hidden services. Our daily honions spotted
snooping behavior before the spike in the hidden services, this
gives us a level of confidence that the snoopings are not only
a result of the anomaly (Figure 2). Rather, there are entities
that actively investigate hidden services.

Snooping HSDirs Nature and Location: In total we detected
at least 110 malicious HSDir using the ILP algorithm, and
about 40000 visits. More than 70% of these HSDirs are
hosted on Cloud infrastructure. Around 25% are exit nodes
as compared to the average, 15% of all relays in 2016, that
have both the HSDir and the Exit flags. This can be interesting
for further investigation, since it is known that some Exit
nodes are malicious and actively interfere with users’ traffic
and perform active MITM attacks [3]. Furthermore, 20% of
the misbehaving HSDirs are, both exit nodes and are hosted
on Cloud systems, hosted in Europe and Northern America.
The top 5 countries are, USA, Germany, France, UK, and
Netherlands. Figure 3 depicts the spread and the geolocation
of the malicious HSDirs.

HSDirs Behavior and Intensity of the Visits: Most of the
visits were just querying the root path of the server and were

Fig. 3: The global map of detected misbehaving HSDirs and
their geographic origin.

automated. However, we identified less than 20 possible man-
ual probing, because of a query for favicon.ico, the little icon
that is shown in the browser, which the Tor browser requests.
Some snoopers kept probing for more information even when
we returned an empty page. For example, we had queries
for description.json, which is a proposal to all HTTP
servers inside Tor network to allow hidden services search
engines such as Ahmia, to index websites. One of the snooping
HSDirs (5.*.*.*:9011) was actively querying the server every
1 hour asking for a server-status page of Apache. It is part
of the functionality provided by mod status in Apache, which
provides information on server activity and performance. Ad-
ditionally, we detected other attack vectors, such as SQL in-
jection, targeting the information_schema.tables,
username enumeration in Drupal, cross-site scripting (XSS),
path traversal (looking for boot.ini and /etc/passwd),
targeting Ruby on Rails framework (rails/info/properties), and
PHP Easter Eggs (?=PHP*-*-*-*-*).

III. CONCLUSION & FUTURE WORK

In this work, we introduced honey onions (HOnions), a
framework for methodically estimating and identifying Tor
HSDir nodes that are snooping on hidden services they are
hosting. We propose algorithms to both estimate the number of
snooping HSDirs and identify them. Our experimental results
indicate that during the period of the study (72 days) at
least 110 such nodes were snooping information about hidden
services they host. Based on our observations not all snooping
HSDirs operate with the same level of sophistication. For
example, some do not visit the hosted honions immediately
to avoid detection by daily honions, our weekly and monthly
honions can detect them. We believe that behavior of the
snoopers can be modeled and studied in more detail. Fur-
thermore, we reveal that more than half of them were hosted
on cloud infrastructure making it difficult to detect malicious
Tor nodes. Furthermore, cloud providers such as Vultr, even
accepts payments in the form of bitcoins, which prevents the
traceback and identification of misbehaving entities.

REFERENCES

[1] A. Sanatinia and G. Noubir. Onionbots: Subverting privacy infrastructure
for cyber attacks. In DSN, 2015.

[2] A. Sanatinia and G. Noubir. Honey onions: a framework for character-
izing and identifying misbehaving tor hsdirs. In IEEE CNS, 2016.

[3] P. Winter, R. Köwer, M. Mulazzani, M. Huber, S. Schrittwieser, S. Lind-
skog, and E. Weippl. Spoiled onions: Exposing malicious tor exit relays.

In PETs, 2014.

