
Poster: Low-latency blockchain consensus
Cristina Basescu

EPFL
Email: cristina.basescu@epfl.ch

Lefteris Kokoris-Kogias
EPFL

Email: eleftherios.kokoriskogias@epfl.ch

Bryan Ford
EPFL

Email: bryan.ford@epfl.ch

Abstract—Blockchains are increasingly attractive due to their
decentralization, yet inherent limitations of high latency, in the
order of minutes, and attacks on consensus cap their practi-
cality. We introduce Blinkchain, a Byzantine consensus protocol
that relies on sharding and locality-preserving techniques from
distributed systems to provide a bound on consensus latency,
proportional to the network delay between the buyer and the
seller nodes. Blinkchain selects a random pool of validators,
some of which are legitimate with high probability, even when
an attacker focuses its forces to crowd out legitimate validators
in a small vicinity.

I. INTRODUCTION

While decentralized blockchains are getting increasingly
attractive due to their third-party independence [1]–[3], they
still suffer from fundamental limitations to increase throughput
and lower latency [4], and to remain secure under attacks [5].
There is abundant work to fix the security and scalability
problems of Bitcoin (and of blockchains that inherit some
of its design decision). Existing solutions, however, still do
not achieve real-time latencies, especially under heavy load,
or they are insecure under strong network adversaries. These
fixes fall under two categories:

• Change the consensus algorithm among transaction val-
idators to practical Byzantine fault-tolerant (PBFT [6])
versions [3], [7], however, PBFT does not scale by design
to large consensus groups. Thus, the system latency and
bandwidth usage degrade with an increasing number of
nodes. Kokoris et al. [2] try to resolve this issue by
splitting the state, but the performance still remains far
from real-time.

• Scale Nakamoto consensus by increasing the block fre-
quency or block size [8], [9], however, the resulting
systems suffer from the same security shortcomings as
Bitcoin.

We believe latency should be treated as a first-class citizen
in blockchains, rather than a by-product of system design.
Even more so if the goal is, for example, a latency comparable
to Visa, in the order of seconds. Many of the proposals
described above introduce valuable directions, such as shard-
ing, which we use in our design too. In addition, we ask
ourselves the following question: Which techniques would
decrease consensus latency, while maintaining security in a
Byzantine fault tolerant scenario?

We propose Blinkchain, a latency-aware blockchain that
provides bounds on consensus latency. We retain sharding as
a technique to scale horizontally. Our proposal differs in the

World

USA

Europe
UK

Italy

NY State

Fig. 1. Example of ring creation. The black squares represent a shard in each
ring, while the grey circles represent nodes.

way we select validators for the blockchain in each shard.
Namely, to achieve low-latency consensus among validators,
we use techniques from Crux [10], which enhances scalable
distributed protocols with low latency. At the same time, we
maintain the security guarantee that an adversary cannot take
over a particular shard by focusing its efforts (e.g., proof of
work) in the vicinity of the shard.

II. BLINKCHAIN ARCHITECTURE

Blinkchain splits the blockchain in shards on a locality-
aware basis, for instance one shard per geographical area.
Geographical areas can overlap, for instance a shard associated
to the state of New York and a shard associated to the US.
We associate to each shard a number of nearby validators,
namely shard replicas, that have to reach consensus on the
shard’s state. As usual in Byzantine fault tolerant systems, we
assume at most 1/3 of the total number of validators are
faulty. We explain in this section how we translate this global
property into shard-local guarantees on the trustworthiness of
validators.

A. Latency-aware shard creation

The goal is to ensure that transactions involving two dif-
ferent shards, e.g., transactions with outputs from Shard1
used as inputs in Shard2, incur a latency proportional to the
diameter of a geographical area that covers both shards, within
a polylogarithmic factor. Using the techniques in Crux [10],
we create overlapping geographical areas centered around
nodes in the system – the so-called rings – rings whose
radius latency-wise increases exponentially (Figure 1). Rings
incorporate as members all nodes located in that geographical
area.

When a node Na submits a transaction, it first needs to find
and fetch some of its unspent transaction outputs (UTXOs)



from the shard where they were created. To make UTXOs re-
sulting from a transaction visible, validators of the transaction
(Section II-C) announce the UTXOs to all outer rings that
cover the shard’s area. By construction, Na is member of at
least one ring that observes such announcements (the biggest
ring containing all nodes in the worst case). Na reads the
announcement from the smallest such intersection ring, Ringi.
Thus, the total latency of the transaction between the node
Ns spending the UTXOs and Na fetching the corresponding
output UTXOs is the latency to communicate in Ringi (which
includes both nodes by construction), summed with the latency
to verify the UTXOs, which we describe below.

The cost of the upper-bound latency guarantee is having
each node participate in multiple shards at the same time,
between 10 and 30 instances in Crux experiments. We believe
this is an acceptable trade-off to lower latency in blockchains.

B. Preventing double spending

One challenge is to avoid double spending, specifically
to prevent a node from spending the same UTXOs in two
different shards. In other words, shards’ views need to be
consistent, such that shard validators reject double-spending
transactions. For this, the system needs to trace UTXOs from
their creation shard to their spending shard and validate a
single trace. However, Crux only offers weak consistency
between shards.

To make shards’ views consistent regarding transactions, we
upgrade Crux to a strongly-consistent system, as follows. We
adopt a token-based approach [11], where we associate one
token to each UTXOs created by a shard, token which is signed
by that shard, and to which the shard appends its identity
(we assume each shard forms at system setup a cothority
with a collective public key, similar to ByzCoin [3]). Each
UTXO used as input to a transaction carries its own token.
Validators of the shard where UTXOs are spent first check
the token signature of each UTXO and then refer to the origin
shard, to see whether these UTXOs appear as outputs. Upon
successful checks, validators insert a transaction in the origin
shard to finalize token passing between the origin shard and the
destination shard. Because validators always check whether the
origin shard contains such a “token-spent” transaction inserted
by other validators, they reject double-spending transactions.

C. Validator selection

Until now, we assumed that validators are honest in i)
checking the UTXOs are valid, and ii) writing the transaction
metadata to outer rings. However, if all validators of a shard
are malicious, they make allow double spending, or may
prevent a node from redeeming its UTXOs.

An attacker may try to exploit our locality preference for
validators to create validator identities close to a shard it wants
to compromise, in the hope that it crowds out other honest
validators. To prove identities, we run during system initial-
ization ByzCoin’s [3] approach of using proof-of-work to
solve challenges in a separate blockchain. However, a powerful
attacker may solve multiple challenges, thus assume multiple

identities, and send these solution to nodes conveniently close
to the victim shard. If we simply assign to a shard its closest
validators, an attacker only needs to be more powerful than
the few other validators in the vicinity.

To ensure an attacker cannot bias validator selection in
a target spending shard, we vary the boundary of the area
covering the shard from where we select validators. In a first
phase, we select a shard’s validators using RandHound [12].
One random number selects a validator, which for a large
number of validators (e.g., 600 validators for an adversary
controlling 25% of the nodes) ensures with high probability
that at least 2/3 of the selected validators are honest. In a
second phase, each shard asks only a subset of these validators
to validate its transactions. The shard selects at verification
time, based on a random beacon [12], the percentage of
validators it picks from a few of its rings, e.g., 30% from
Ring1, 40% from Ring2 and the remaining from Ring3. Since
the attacker does not know these percentages, it cannot know
how close to the target shard to place its identities.

The security stems from the fact that the validator assign-
ment remains random, meaning that at most 1/3 of validators
per shard are untrustworthy on a global scale. Even if the
adversary tries to place all his identities close to a victim
shard, the randomness guarantees that as long as there are
some honest validators in Ring1, Ring2 or Ring3, at least
one of them is selected and signals any double-spending in the
victim shard, before clients tentatively gain trust on transaction
validity. The agreement in Ring2 and Ring3 can be relaxed
for optimistic commitment, for instance if the total percentage
of validators selected from Ring1 and Ring2 is higher than
1/3 of validators, some of these validators are certainly honest.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] E. K.-K. et al., “Omniledger: A secure, scale-out, decentralized ledger,”
Cryptology ePrint Archive, Report 2017/406, 2017, http://eprint.iacr.org/
2017/406.

[3] E. K. K. et al., “Enhancing bitcoin security and performance with strong
consistency via collective signing,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016.

[4] K. C. et al., “On scaling decentralized blockchains (a position paper),”
in 3rd Workshop on Bitcoin and Blockchain Research, 2016.

[5] J. e. a. Bonneau, “Sok: Research perspectives and challenges for bitcoin
and cryptocurrencies,” in IEEE Symposium on Security and Privacy
(SP), 2015.

[6] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proceedings of the Third Symposium on Operating Systems Design and
Implementation (OSDI), 1999.

[7] C. D. et al., “Bitcoin meets strong consistency,” CoRR, vol.
abs/1412.7935, 2014.

[8] I. e. a. Eyal, “Bitcoin-NG: A scalable blockchain protocol,” in 13th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2016.

[9] “Bitcoin unlimited,” 2016, http://www.bitcoinunlimited.info/.
[10] M. F. Nowlan, J. Faleiro, and B. Ford, “Crux: Locality-preserving

distributed systems,” CoRR, vol. abs/1405.0637, 2014.
[11] D. Stevenson, “Token-based consistency of replicated servers,” in Digest

of Papers. COMPCON Spring 89. Thirty-Fourth IEEE Computer Society
International Conference: Intellectual Leverage, 1989.

[12] E. Syta and P. J. et al., “Scalable bias-resistant distributed randomness,”
in 38th IEEE Symposium on Security and Privacy, 2017.


